Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco

Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2014-08, Vol.12 (6), p.674-684
Hauptverfasser: Li, Yiting, Gu, Mian, Zhang, Xiao, Zhang, Jun, Fan, Hongmei, Li, Panpan, Li, Zhaofu, Xu, Guohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 6
container_start_page 674
container_title Plant biotechnology journal
container_volume 12
creator Li, Yiting
Gu, Mian
Zhang, Xiao
Zhang, Jun
Fan, Hongmei
Li, Panpan
Li, Zhaofu
Xu, Guohua
description Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.
doi_str_mv 10.1111/pbi.12171
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554955424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067680009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</originalsourceid><addsrcrecordid>eNp1kcFuFSEUhonR2Fpd-AJK4kYXt-UwDMwstanapIkm2jVh4MyVOgMjzNTcnY_gM_okcjttFyaSEAh8fOeEn5DnwI6hjJOp88fAQcEDcghCqo2SNX94vxfigDzJ-YoxDrKWj8kBr6FRbcUPyXIWtj4gJh-21NCMIfvZXyO99nkxw59fv-dk7Pf9bcIpphkTzbs840j7mMrZyvgR6RiDn-ONaPoWc5lpydRh763HYHfUBzrHzlgbn5JHvRkyPrtdj8jl-7Ovpx83F58-nJ--vdjYugHYYAMSW-WgYmhVW9cOeuH61kneorSWCWgaxphznDsjwHSiA8V6C7YzTsrqiLxevVOKPxbMsx59tjgMJmBcsoa6FkUruCjoq3_Qq7ikULrTFZNK7uu0hXqzUjbFnBP2ekp-NGmngel9FrpkoW-yKOyLW-PSjejuybvPL8DJCvz0A-7-b9Kf353fKV-uL3oTtdkmn_XlF85AMAaVZI2q_gJ6JKAC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067680009</pqid></control><display><type>article</type><title>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</title><source>Wiley Online Library Open Access</source><creator>Li, Yiting ; Gu, Mian ; Zhang, Xiao ; Zhang, Jun ; Fan, Hongmei ; Li, Panpan ; Li, Zhaofu ; Xu, Guohua</creator><creatorcontrib>Li, Yiting ; Gu, Mian ; Zhang, Xiao ; Zhang, Jun ; Fan, Hongmei ; Li, Panpan ; Li, Zhaofu ; Xu, Guohua</creatorcontrib><description>Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12171</identifier><identifier>PMID: 25187932</identifier><language>eng</language><publisher>England: Blackwell Pub</publisher><subject>Anthocyanins ; Anthocyanins - biosynthesis ; Biochemistry ; Biosynthesis ; Biosynthetic Pathways - drug effects ; Biosynthetic Pathways - genetics ; Brassica ; Brassica oleracea ; Brassica oleracea botrytis ; Brassica oleracea var. botrytis ; cauliflower ; cold ; Color ; Computer Systems ; Drought ; engineering ; Fertilizer application ; Flavonoids ; Flowers &amp; plants ; Gene expression ; Gene Expression Regulation, Plant - drug effects ; genes ; Genes, Plant ; Genes, Reporter ; Genetic Engineering - methods ; Glucuronidase - metabolism ; Leaves ; Micronutrients ; Monitoring ; Nicotiana - drug effects ; Nicotiana - genetics ; Nicotiana tabacum ; Nitrogen ; Oryza - drug effects ; Oryza - genetics ; Oryza sativa ; Phosphorus ; Phosphorus - deficiency ; Phosphorus - pharmacology ; phosphorus diagnosis ; phosphorus fertilizers ; Plant extracts ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; plant response ; Plants, Genetically Modified ; prediction ; Promoter Regions, Genetic ; Reflectance ; Remote sensing ; rice ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; salt stress ; Signal transduction ; smart plant ; soil ; Soil sciences ; Spectral reflectance ; Time Factors ; Tobacco ; Transcription factors ; Transgenic plants ; Trends ; Visual thresholds ; visual‐tracking reporter ; wavelengths</subject><ispartof>Plant biotechnology journal, 2014-08, Vol.12 (6), p.674-684</ispartof><rights>2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd</rights><rights>2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</citedby><cites>FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12171$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25187932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yiting</creatorcontrib><creatorcontrib>Gu, Mian</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Fan, Hongmei</creatorcontrib><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Li, Zhaofu</creatorcontrib><creatorcontrib>Xu, Guohua</creatorcontrib><title>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.</description><subject>Anthocyanins</subject><subject>Anthocyanins - biosynthesis</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - drug effects</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Brassica</subject><subject>Brassica oleracea</subject><subject>Brassica oleracea botrytis</subject><subject>Brassica oleracea var. botrytis</subject><subject>cauliflower</subject><subject>cold</subject><subject>Color</subject><subject>Computer Systems</subject><subject>Drought</subject><subject>engineering</subject><subject>Fertilizer application</subject><subject>Flavonoids</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Genes, Reporter</subject><subject>Genetic Engineering - methods</subject><subject>Glucuronidase - metabolism</subject><subject>Leaves</subject><subject>Micronutrients</subject><subject>Monitoring</subject><subject>Nicotiana - drug effects</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana tabacum</subject><subject>Nitrogen</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Phosphorus</subject><subject>Phosphorus - deficiency</subject><subject>Phosphorus - pharmacology</subject><subject>phosphorus diagnosis</subject><subject>phosphorus fertilizers</subject><subject>Plant extracts</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>plant response</subject><subject>Plants, Genetically Modified</subject><subject>prediction</subject><subject>Promoter Regions, Genetic</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>rice</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>salt stress</subject><subject>Signal transduction</subject><subject>smart plant</subject><subject>soil</subject><subject>Soil sciences</subject><subject>Spectral reflectance</subject><subject>Time Factors</subject><subject>Tobacco</subject><subject>Transcription factors</subject><subject>Transgenic plants</subject><subject>Trends</subject><subject>Visual thresholds</subject><subject>visual‐tracking reporter</subject><subject>wavelengths</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFuFSEUhonR2Fpd-AJK4kYXt-UwDMwstanapIkm2jVh4MyVOgMjzNTcnY_gM_okcjttFyaSEAh8fOeEn5DnwI6hjJOp88fAQcEDcghCqo2SNX94vxfigDzJ-YoxDrKWj8kBr6FRbcUPyXIWtj4gJh-21NCMIfvZXyO99nkxw59fv-dk7Pf9bcIpphkTzbs840j7mMrZyvgR6RiDn-ONaPoWc5lpydRh763HYHfUBzrHzlgbn5JHvRkyPrtdj8jl-7Ovpx83F58-nJ--vdjYugHYYAMSW-WgYmhVW9cOeuH61kneorSWCWgaxphznDsjwHSiA8V6C7YzTsrqiLxevVOKPxbMsx59tjgMJmBcsoa6FkUruCjoq3_Qq7ikULrTFZNK7uu0hXqzUjbFnBP2ekp-NGmngel9FrpkoW-yKOyLW-PSjejuybvPL8DJCvz0A-7-b9Kf353fKV-uL3oTtdkmn_XlF85AMAaVZI2q_gJ6JKAC</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Li, Yiting</creator><creator>Gu, Mian</creator><creator>Zhang, Xiao</creator><creator>Zhang, Jun</creator><creator>Fan, Hongmei</creator><creator>Li, Panpan</creator><creator>Li, Zhaofu</creator><creator>Xu, Guohua</creator><general>Blackwell Pub</general><general>John Wiley &amp; Sons, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201408</creationdate><title>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</title><author>Li, Yiting ; Gu, Mian ; Zhang, Xiao ; Zhang, Jun ; Fan, Hongmei ; Li, Panpan ; Li, Zhaofu ; Xu, Guohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anthocyanins</topic><topic>Anthocyanins - biosynthesis</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - drug effects</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Brassica</topic><topic>Brassica oleracea</topic><topic>Brassica oleracea botrytis</topic><topic>Brassica oleracea var. botrytis</topic><topic>cauliflower</topic><topic>cold</topic><topic>Color</topic><topic>Computer Systems</topic><topic>Drought</topic><topic>engineering</topic><topic>Fertilizer application</topic><topic>Flavonoids</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Genes, Reporter</topic><topic>Genetic Engineering - methods</topic><topic>Glucuronidase - metabolism</topic><topic>Leaves</topic><topic>Micronutrients</topic><topic>Monitoring</topic><topic>Nicotiana - drug effects</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana tabacum</topic><topic>Nitrogen</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Phosphorus</topic><topic>Phosphorus - deficiency</topic><topic>Phosphorus - pharmacology</topic><topic>phosphorus diagnosis</topic><topic>phosphorus fertilizers</topic><topic>Plant extracts</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>plant response</topic><topic>Plants, Genetically Modified</topic><topic>prediction</topic><topic>Promoter Regions, Genetic</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>rice</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>salt stress</topic><topic>Signal transduction</topic><topic>smart plant</topic><topic>soil</topic><topic>Soil sciences</topic><topic>Spectral reflectance</topic><topic>Time Factors</topic><topic>Tobacco</topic><topic>Transcription factors</topic><topic>Transgenic plants</topic><topic>Trends</topic><topic>Visual thresholds</topic><topic>visual‐tracking reporter</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiting</creatorcontrib><creatorcontrib>Gu, Mian</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Fan, Hongmei</creatorcontrib><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Li, Zhaofu</creatorcontrib><creatorcontrib>Xu, Guohua</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yiting</au><au>Gu, Mian</au><au>Zhang, Xiao</au><au>Zhang, Jun</au><au>Fan, Hongmei</au><au>Li, Panpan</au><au>Li, Zhaofu</au><au>Xu, Guohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2014-08</date><risdate>2014</risdate><volume>12</volume><issue>6</issue><spage>674</spage><epage>684</epage><pages>674-684</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.</abstract><cop>England</cop><pub>Blackwell Pub</pub><pmid>25187932</pmid><doi>10.1111/pbi.12171</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2014-08, Vol.12 (6), p.674-684
issn 1467-7644
1467-7652
language eng
recordid cdi_proquest_miscellaneous_1554955424
source Wiley Online Library Open Access
subjects Anthocyanins
Anthocyanins - biosynthesis
Biochemistry
Biosynthesis
Biosynthetic Pathways - drug effects
Biosynthetic Pathways - genetics
Brassica
Brassica oleracea
Brassica oleracea botrytis
Brassica oleracea var. botrytis
cauliflower
cold
Color
Computer Systems
Drought
engineering
Fertilizer application
Flavonoids
Flowers & plants
Gene expression
Gene Expression Regulation, Plant - drug effects
genes
Genes, Plant
Genes, Reporter
Genetic Engineering - methods
Glucuronidase - metabolism
Leaves
Micronutrients
Monitoring
Nicotiana - drug effects
Nicotiana - genetics
Nicotiana tabacum
Nitrogen
Oryza - drug effects
Oryza - genetics
Oryza sativa
Phosphorus
Phosphorus - deficiency
Phosphorus - pharmacology
phosphorus diagnosis
phosphorus fertilizers
Plant extracts
Plant Leaves - drug effects
Plant Leaves - metabolism
plant response
Plants, Genetically Modified
prediction
Promoter Regions, Genetic
Reflectance
Remote sensing
rice
RNA, Messenger - genetics
RNA, Messenger - metabolism
salt stress
Signal transduction
smart plant
soil
Soil sciences
Spectral reflectance
Time Factors
Tobacco
Transcription factors
Transgenic plants
Trends
Visual thresholds
visual‐tracking reporter
wavelengths
title Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20sensitive%20visual%E2%80%90tracking%20reporter%20system%20for%20real%E2%80%90time%20monitoring%20phosphorus%20deficiency%20in%20tobacco&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Li,%20Yiting&rft.date=2014-08&rft.volume=12&rft.issue=6&rft.spage=674&rft.epage=684&rft.pages=674-684&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12171&rft_dat=%3Cproquest_24P%3E3067680009%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067680009&rft_id=info:pmid/25187932&rfr_iscdi=true