Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco
Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this stu...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2014-08, Vol.12 (6), p.674-684 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 6 |
container_start_page | 674 |
container_title | Plant biotechnology journal |
container_volume | 12 |
creator | Li, Yiting Gu, Mian Zhang, Xiao Zhang, Jun Fan, Hongmei Li, Panpan Li, Zhaofu Xu, Guohua |
description | Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance. |
doi_str_mv | 10.1111/pbi.12171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554955424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067680009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</originalsourceid><addsrcrecordid>eNp1kcFuFSEUhonR2Fpd-AJK4kYXt-UwDMwstanapIkm2jVh4MyVOgMjzNTcnY_gM_okcjttFyaSEAh8fOeEn5DnwI6hjJOp88fAQcEDcghCqo2SNX94vxfigDzJ-YoxDrKWj8kBr6FRbcUPyXIWtj4gJh-21NCMIfvZXyO99nkxw59fv-dk7Pf9bcIpphkTzbs840j7mMrZyvgR6RiDn-ONaPoWc5lpydRh763HYHfUBzrHzlgbn5JHvRkyPrtdj8jl-7Ovpx83F58-nJ--vdjYugHYYAMSW-WgYmhVW9cOeuH61kneorSWCWgaxphznDsjwHSiA8V6C7YzTsrqiLxevVOKPxbMsx59tjgMJmBcsoa6FkUruCjoq3_Qq7ikULrTFZNK7uu0hXqzUjbFnBP2ekp-NGmngel9FrpkoW-yKOyLW-PSjejuybvPL8DJCvz0A-7-b9Kf353fKV-uL3oTtdkmn_XlF85AMAaVZI2q_gJ6JKAC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067680009</pqid></control><display><type>article</type><title>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</title><source>Wiley Online Library Open Access</source><creator>Li, Yiting ; Gu, Mian ; Zhang, Xiao ; Zhang, Jun ; Fan, Hongmei ; Li, Panpan ; Li, Zhaofu ; Xu, Guohua</creator><creatorcontrib>Li, Yiting ; Gu, Mian ; Zhang, Xiao ; Zhang, Jun ; Fan, Hongmei ; Li, Panpan ; Li, Zhaofu ; Xu, Guohua</creatorcontrib><description>Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12171</identifier><identifier>PMID: 25187932</identifier><language>eng</language><publisher>England: Blackwell Pub</publisher><subject>Anthocyanins ; Anthocyanins - biosynthesis ; Biochemistry ; Biosynthesis ; Biosynthetic Pathways - drug effects ; Biosynthetic Pathways - genetics ; Brassica ; Brassica oleracea ; Brassica oleracea botrytis ; Brassica oleracea var. botrytis ; cauliflower ; cold ; Color ; Computer Systems ; Drought ; engineering ; Fertilizer application ; Flavonoids ; Flowers & plants ; Gene expression ; Gene Expression Regulation, Plant - drug effects ; genes ; Genes, Plant ; Genes, Reporter ; Genetic Engineering - methods ; Glucuronidase - metabolism ; Leaves ; Micronutrients ; Monitoring ; Nicotiana - drug effects ; Nicotiana - genetics ; Nicotiana tabacum ; Nitrogen ; Oryza - drug effects ; Oryza - genetics ; Oryza sativa ; Phosphorus ; Phosphorus - deficiency ; Phosphorus - pharmacology ; phosphorus diagnosis ; phosphorus fertilizers ; Plant extracts ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; plant response ; Plants, Genetically Modified ; prediction ; Promoter Regions, Genetic ; Reflectance ; Remote sensing ; rice ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; salt stress ; Signal transduction ; smart plant ; soil ; Soil sciences ; Spectral reflectance ; Time Factors ; Tobacco ; Transcription factors ; Transgenic plants ; Trends ; Visual thresholds ; visual‐tracking reporter ; wavelengths</subject><ispartof>Plant biotechnology journal, 2014-08, Vol.12 (6), p.674-684</ispartof><rights>2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd</rights><rights>2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</citedby><cites>FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12171$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25187932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yiting</creatorcontrib><creatorcontrib>Gu, Mian</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Fan, Hongmei</creatorcontrib><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Li, Zhaofu</creatorcontrib><creatorcontrib>Xu, Guohua</creatorcontrib><title>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.</description><subject>Anthocyanins</subject><subject>Anthocyanins - biosynthesis</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - drug effects</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Brassica</subject><subject>Brassica oleracea</subject><subject>Brassica oleracea botrytis</subject><subject>Brassica oleracea var. botrytis</subject><subject>cauliflower</subject><subject>cold</subject><subject>Color</subject><subject>Computer Systems</subject><subject>Drought</subject><subject>engineering</subject><subject>Fertilizer application</subject><subject>Flavonoids</subject><subject>Flowers & plants</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Genes, Reporter</subject><subject>Genetic Engineering - methods</subject><subject>Glucuronidase - metabolism</subject><subject>Leaves</subject><subject>Micronutrients</subject><subject>Monitoring</subject><subject>Nicotiana - drug effects</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana tabacum</subject><subject>Nitrogen</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Phosphorus</subject><subject>Phosphorus - deficiency</subject><subject>Phosphorus - pharmacology</subject><subject>phosphorus diagnosis</subject><subject>phosphorus fertilizers</subject><subject>Plant extracts</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>plant response</subject><subject>Plants, Genetically Modified</subject><subject>prediction</subject><subject>Promoter Regions, Genetic</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>rice</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>salt stress</subject><subject>Signal transduction</subject><subject>smart plant</subject><subject>soil</subject><subject>Soil sciences</subject><subject>Spectral reflectance</subject><subject>Time Factors</subject><subject>Tobacco</subject><subject>Transcription factors</subject><subject>Transgenic plants</subject><subject>Trends</subject><subject>Visual thresholds</subject><subject>visual‐tracking reporter</subject><subject>wavelengths</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFuFSEUhonR2Fpd-AJK4kYXt-UwDMwstanapIkm2jVh4MyVOgMjzNTcnY_gM_okcjttFyaSEAh8fOeEn5DnwI6hjJOp88fAQcEDcghCqo2SNX94vxfigDzJ-YoxDrKWj8kBr6FRbcUPyXIWtj4gJh-21NCMIfvZXyO99nkxw59fv-dk7Pf9bcIpphkTzbs840j7mMrZyvgR6RiDn-ONaPoWc5lpydRh763HYHfUBzrHzlgbn5JHvRkyPrtdj8jl-7Ovpx83F58-nJ--vdjYugHYYAMSW-WgYmhVW9cOeuH61kneorSWCWgaxphznDsjwHSiA8V6C7YzTsrqiLxevVOKPxbMsx59tjgMJmBcsoa6FkUruCjoq3_Qq7ikULrTFZNK7uu0hXqzUjbFnBP2ekp-NGmngel9FrpkoW-yKOyLW-PSjejuybvPL8DJCvz0A-7-b9Kf353fKV-uL3oTtdkmn_XlF85AMAaVZI2q_gJ6JKAC</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Li, Yiting</creator><creator>Gu, Mian</creator><creator>Zhang, Xiao</creator><creator>Zhang, Jun</creator><creator>Fan, Hongmei</creator><creator>Li, Panpan</creator><creator>Li, Zhaofu</creator><creator>Xu, Guohua</creator><general>Blackwell Pub</general><general>John Wiley & Sons, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201408</creationdate><title>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</title><author>Li, Yiting ; Gu, Mian ; Zhang, Xiao ; Zhang, Jun ; Fan, Hongmei ; Li, Panpan ; Li, Zhaofu ; Xu, Guohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5811-e816e97d130ec7955d1f4df9d629e6cc04188000dd22da41ab4b170fc1cbad663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anthocyanins</topic><topic>Anthocyanins - biosynthesis</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - drug effects</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Brassica</topic><topic>Brassica oleracea</topic><topic>Brassica oleracea botrytis</topic><topic>Brassica oleracea var. botrytis</topic><topic>cauliflower</topic><topic>cold</topic><topic>Color</topic><topic>Computer Systems</topic><topic>Drought</topic><topic>engineering</topic><topic>Fertilizer application</topic><topic>Flavonoids</topic><topic>Flowers & plants</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Genes, Reporter</topic><topic>Genetic Engineering - methods</topic><topic>Glucuronidase - metabolism</topic><topic>Leaves</topic><topic>Micronutrients</topic><topic>Monitoring</topic><topic>Nicotiana - drug effects</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana tabacum</topic><topic>Nitrogen</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Phosphorus</topic><topic>Phosphorus - deficiency</topic><topic>Phosphorus - pharmacology</topic><topic>phosphorus diagnosis</topic><topic>phosphorus fertilizers</topic><topic>Plant extracts</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>plant response</topic><topic>Plants, Genetically Modified</topic><topic>prediction</topic><topic>Promoter Regions, Genetic</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>rice</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>salt stress</topic><topic>Signal transduction</topic><topic>smart plant</topic><topic>soil</topic><topic>Soil sciences</topic><topic>Spectral reflectance</topic><topic>Time Factors</topic><topic>Tobacco</topic><topic>Transcription factors</topic><topic>Transgenic plants</topic><topic>Trends</topic><topic>Visual thresholds</topic><topic>visual‐tracking reporter</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiting</creatorcontrib><creatorcontrib>Gu, Mian</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Fan, Hongmei</creatorcontrib><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Li, Zhaofu</creatorcontrib><creatorcontrib>Xu, Guohua</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yiting</au><au>Gu, Mian</au><au>Zhang, Xiao</au><au>Zhang, Jun</au><au>Fan, Hongmei</au><au>Li, Panpan</au><au>Li, Zhaofu</au><au>Xu, Guohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2014-08</date><risdate>2014</risdate><volume>12</volume><issue>6</issue><spage>674</spage><epage>684</epage><pages>674-684</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time‐ and labour‐consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P‐starvation‐induced rice gene. The leaves of OsPT6ₚᵣₒ::Pr (PT6ₚᵣₒ::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P‐deficient condition. Such additive purple colour was not detected by deficiencies of other major‐ and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour‐based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.</abstract><cop>England</cop><pub>Blackwell Pub</pub><pmid>25187932</pmid><doi>10.1111/pbi.12171</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2014-08, Vol.12 (6), p.674-684 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1554955424 |
source | Wiley Online Library Open Access |
subjects | Anthocyanins Anthocyanins - biosynthesis Biochemistry Biosynthesis Biosynthetic Pathways - drug effects Biosynthetic Pathways - genetics Brassica Brassica oleracea Brassica oleracea botrytis Brassica oleracea var. botrytis cauliflower cold Color Computer Systems Drought engineering Fertilizer application Flavonoids Flowers & plants Gene expression Gene Expression Regulation, Plant - drug effects genes Genes, Plant Genes, Reporter Genetic Engineering - methods Glucuronidase - metabolism Leaves Micronutrients Monitoring Nicotiana - drug effects Nicotiana - genetics Nicotiana tabacum Nitrogen Oryza - drug effects Oryza - genetics Oryza sativa Phosphorus Phosphorus - deficiency Phosphorus - pharmacology phosphorus diagnosis phosphorus fertilizers Plant extracts Plant Leaves - drug effects Plant Leaves - metabolism plant response Plants, Genetically Modified prediction Promoter Regions, Genetic Reflectance Remote sensing rice RNA, Messenger - genetics RNA, Messenger - metabolism salt stress Signal transduction smart plant soil Soil sciences Spectral reflectance Time Factors Tobacco Transcription factors Transgenic plants Trends Visual thresholds visual‐tracking reporter wavelengths |
title | Engineering a sensitive visual‐tracking reporter system for real‐time monitoring phosphorus deficiency in tobacco |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20sensitive%20visual%E2%80%90tracking%20reporter%20system%20for%20real%E2%80%90time%20monitoring%20phosphorus%20deficiency%20in%20tobacco&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Li,%20Yiting&rft.date=2014-08&rft.volume=12&rft.issue=6&rft.spage=674&rft.epage=684&rft.pages=674-684&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12171&rft_dat=%3Cproquest_24P%3E3067680009%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067680009&rft_id=info:pmid/25187932&rfr_iscdi=true |