Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt

Recent gypsum stromatolites are forming along the margin as well as on the pond floor of the EMISAL saltworks, Fayium, Egypt. Gypsum precipitates are classified according to their morphology, fabrics, and crystal size into (1) subaqueous bottom gypsum crusts, (2) selenitic gypsum facies, (3) stromat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Facies 2014-07, Vol.60 (3), p.721-735
1. Verfasser: Taher, Amany G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735
container_issue 3
container_start_page 721
container_title Facies
container_volume 60
creator Taher, Amany G.
description Recent gypsum stromatolites are forming along the margin as well as on the pond floor of the EMISAL saltworks, Fayium, Egypt. Gypsum precipitates are classified according to their morphology, fabrics, and crystal size into (1) subaqueous bottom gypsum crusts, (2) selenitic gypsum facies, (3) stromatolitic gypsum dome facies, and (4) gypsolite facies. Two types of microbial mats, lithifying and non-lithifying, can be identified. The lithifying mat is shallow and composed of an alternation of gypsum and microbial layers that are seasonally controlled. The non-lithifying mat, formed in the deeper part of the pond, is a greenish-brown slime-rich layer that exhibits a frothy macro texture and produces a firm gelatinous film covering the sediment surface. Calcium carbonate (mostly aragonite) particles, identified by light and scanning electron microscopy, and X-ray diffraction occur within the deeper part of the lithified mat and are associated with living and degrading biofilm. Precipitation of aragonite is associated with the dissolution of gypsum, which may have resulted from bacterial sulphate reduction. The latter process increases alkalinity and ultimately results in the replacement of gypsum by aragonite.
doi_str_mv 10.1007/s10347-014-0405-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554950795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3335542701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-7545abc5d0df8885f175122e3f1ffa622e381632cce86d2bf911cd8e9ba1348b3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvBi4dF8yXNkh7H2HQw8aCePIQsTUZH28ykPezfm1IPInj68oXnffl4ELoF8gCEiMcIhOUCE8gxyQnH_AxNYA4U55KSczQhICguQBSX6CrGAyFUEEYm6HPtQ6O7yreZbsvM6NpUrjLjj3dZ40sb2mx_Osa-waVvqlZ3tsxiF3zK-brqbJxlq5fN22I7y9b6VPVN2lOgu0YXTtfR3vzMKfpYr96Xz3j7-rRZLrZYM0E7LHjO9c7wkpROSskdCA6UWubAOT0fXhLmjBpj5bykO1cAmFLaYqeB5XLHpuh-7D0G_9Xb2KmmisbWtW6t76MCzvOCE1HwhN79QQ--D226LlGMF5wKyRIFI2WCjzFYp46hanQ4KSBq0K1G3SrpVoNuNTTTMRMT2-5t-NX8b-gbdGmBsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535952783</pqid></control><display><type>article</type><title>Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt</title><source>SpringerLink Journals - AutoHoldings</source><creator>Taher, Amany G.</creator><creatorcontrib>Taher, Amany G.</creatorcontrib><description>Recent gypsum stromatolites are forming along the margin as well as on the pond floor of the EMISAL saltworks, Fayium, Egypt. Gypsum precipitates are classified according to their morphology, fabrics, and crystal size into (1) subaqueous bottom gypsum crusts, (2) selenitic gypsum facies, (3) stromatolitic gypsum dome facies, and (4) gypsolite facies. Two types of microbial mats, lithifying and non-lithifying, can be identified. The lithifying mat is shallow and composed of an alternation of gypsum and microbial layers that are seasonally controlled. The non-lithifying mat, formed in the deeper part of the pond, is a greenish-brown slime-rich layer that exhibits a frothy macro texture and produces a firm gelatinous film covering the sediment surface. Calcium carbonate (mostly aragonite) particles, identified by light and scanning electron microscopy, and X-ray diffraction occur within the deeper part of the lithified mat and are associated with living and degrading biofilm. Precipitation of aragonite is associated with the dissolution of gypsum, which may have resulted from bacterial sulphate reduction. The latter process increases alkalinity and ultimately results in the replacement of gypsum by aragonite.</description><identifier>ISSN: 0172-9179</identifier><identifier>EISSN: 1612-4820</identifier><identifier>DOI: 10.1007/s10347-014-0405-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alkalinity ; Aragonite ; Bacteria ; Biofilms ; Biogeosciences ; Calcium carbonate ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Geochemistry ; Gypsum ; Microorganisms ; Original Article ; Paleontology ; Ponds ; Precipitation ; Sedimentology ; Sulfate reduction ; Surface layer ; Texture ; X-ray diffraction</subject><ispartof>Facies, 2014-07, Vol.60 (3), p.721-735</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-7545abc5d0df8885f175122e3f1ffa622e381632cce86d2bf911cd8e9ba1348b3</citedby><cites>FETCH-LOGICAL-a372t-7545abc5d0df8885f175122e3f1ffa622e381632cce86d2bf911cd8e9ba1348b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10347-014-0405-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10347-014-0405-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Taher, Amany G.</creatorcontrib><title>Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt</title><title>Facies</title><addtitle>Facies</addtitle><description>Recent gypsum stromatolites are forming along the margin as well as on the pond floor of the EMISAL saltworks, Fayium, Egypt. Gypsum precipitates are classified according to their morphology, fabrics, and crystal size into (1) subaqueous bottom gypsum crusts, (2) selenitic gypsum facies, (3) stromatolitic gypsum dome facies, and (4) gypsolite facies. Two types of microbial mats, lithifying and non-lithifying, can be identified. The lithifying mat is shallow and composed of an alternation of gypsum and microbial layers that are seasonally controlled. The non-lithifying mat, formed in the deeper part of the pond, is a greenish-brown slime-rich layer that exhibits a frothy macro texture and produces a firm gelatinous film covering the sediment surface. Calcium carbonate (mostly aragonite) particles, identified by light and scanning electron microscopy, and X-ray diffraction occur within the deeper part of the lithified mat and are associated with living and degrading biofilm. Precipitation of aragonite is associated with the dissolution of gypsum, which may have resulted from bacterial sulphate reduction. The latter process increases alkalinity and ultimately results in the replacement of gypsum by aragonite.</description><subject>Alkalinity</subject><subject>Aragonite</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biogeosciences</subject><subject>Calcium carbonate</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Geochemistry</subject><subject>Gypsum</subject><subject>Microorganisms</subject><subject>Original Article</subject><subject>Paleontology</subject><subject>Ponds</subject><subject>Precipitation</subject><subject>Sedimentology</subject><subject>Sulfate reduction</subject><subject>Surface layer</subject><subject>Texture</subject><subject>X-ray diffraction</subject><issn>0172-9179</issn><issn>1612-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvBi4dF8yXNkh7H2HQw8aCePIQsTUZH28ykPezfm1IPInj68oXnffl4ELoF8gCEiMcIhOUCE8gxyQnH_AxNYA4U55KSczQhICguQBSX6CrGAyFUEEYm6HPtQ6O7yreZbsvM6NpUrjLjj3dZ40sb2mx_Osa-waVvqlZ3tsxiF3zK-brqbJxlq5fN22I7y9b6VPVN2lOgu0YXTtfR3vzMKfpYr96Xz3j7-rRZLrZYM0E7LHjO9c7wkpROSskdCA6UWubAOT0fXhLmjBpj5bykO1cAmFLaYqeB5XLHpuh-7D0G_9Xb2KmmisbWtW6t76MCzvOCE1HwhN79QQ--D226LlGMF5wKyRIFI2WCjzFYp46hanQ4KSBq0K1G3SrpVoNuNTTTMRMT2-5t-NX8b-gbdGmBsA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Taher, Amany G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt</title><author>Taher, Amany G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-7545abc5d0df8885f175122e3f1ffa622e381632cce86d2bf911cd8e9ba1348b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkalinity</topic><topic>Aragonite</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biogeosciences</topic><topic>Calcium carbonate</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Geochemistry</topic><topic>Gypsum</topic><topic>Microorganisms</topic><topic>Original Article</topic><topic>Paleontology</topic><topic>Ponds</topic><topic>Precipitation</topic><topic>Sedimentology</topic><topic>Sulfate reduction</topic><topic>Surface layer</topic><topic>Texture</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taher, Amany G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Facies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taher, Amany G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt</atitle><jtitle>Facies</jtitle><stitle>Facies</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>60</volume><issue>3</issue><spage>721</spage><epage>735</epage><pages>721-735</pages><issn>0172-9179</issn><eissn>1612-4820</eissn><abstract>Recent gypsum stromatolites are forming along the margin as well as on the pond floor of the EMISAL saltworks, Fayium, Egypt. Gypsum precipitates are classified according to their morphology, fabrics, and crystal size into (1) subaqueous bottom gypsum crusts, (2) selenitic gypsum facies, (3) stromatolitic gypsum dome facies, and (4) gypsolite facies. Two types of microbial mats, lithifying and non-lithifying, can be identified. The lithifying mat is shallow and composed of an alternation of gypsum and microbial layers that are seasonally controlled. The non-lithifying mat, formed in the deeper part of the pond, is a greenish-brown slime-rich layer that exhibits a frothy macro texture and produces a firm gelatinous film covering the sediment surface. Calcium carbonate (mostly aragonite) particles, identified by light and scanning electron microscopy, and X-ray diffraction occur within the deeper part of the lithified mat and are associated with living and degrading biofilm. Precipitation of aragonite is associated with the dissolution of gypsum, which may have resulted from bacterial sulphate reduction. The latter process increases alkalinity and ultimately results in the replacement of gypsum by aragonite.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10347-014-0405-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0172-9179
ispartof Facies, 2014-07, Vol.60 (3), p.721-735
issn 0172-9179
1612-4820
language eng
recordid cdi_proquest_miscellaneous_1554950795
source SpringerLink Journals - AutoHoldings
subjects Alkalinity
Aragonite
Bacteria
Biofilms
Biogeosciences
Calcium carbonate
Earth and Environmental Science
Earth Sciences
Ecology
Geochemistry
Gypsum
Microorganisms
Original Article
Paleontology
Ponds
Precipitation
Sedimentology
Sulfate reduction
Surface layer
Texture
X-ray diffraction
title Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20and%20calcification%20of%20modern%20gypsum-dominated%20stromatolites,%20EMISAL,%20Fayium,%20Egypt&rft.jtitle=Facies&rft.au=Taher,%20Amany%20G.&rft.date=2014-07-01&rft.volume=60&rft.issue=3&rft.spage=721&rft.epage=735&rft.pages=721-735&rft.issn=0172-9179&rft.eissn=1612-4820&rft_id=info:doi/10.1007/s10347-014-0405-5&rft_dat=%3Cproquest_cross%3E3335542701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535952783&rft_id=info:pmid/&rfr_iscdi=true