Coral feeding on microalgae assessed with molecular trophic markers

Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2014-08, Vol.23 (15), p.3870-3876
Hauptverfasser: Leal, Miguel C, Ferrier‐Pagès, Christine, Calado, Ricardo, Thompson, Megan E, Frischer, Marc E, Nejstgaard, Jens C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3876
container_issue 15
container_start_page 3870
container_title Molecular ecology
container_volume 23
creator Leal, Miguel C
Ferrier‐Pagès, Christine
Calado, Ricardo
Thompson, Megan E
Frischer, Marc E
Nejstgaard, Jens C
description Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end‐point PCR amplification of algae‐specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.
doi_str_mv 10.1111/mec.12486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554950048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1548193647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5076-afc4973c8e5b844e66e02abf5e4ca8c7c92ff453daa6fc90a8af755d1b889ea33</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_Agit1WD_4DOuBFD9Pm9yTHMtRVqAqudXsL2czLNnVmsyY7tP3vzTptD4JgCOTyeV947wWhVwQfk3JOBnDHhHIln6AZYVLUVPPLp2iGtaQ1wYodoMOcrzEmjArxHB1QTopndIbaNibbVx6gC5t1FTfVEFyKtl9bqGzOUG5X3YTdVTXEHtzY21TtUtxeBVcNNv2ElF-gZ972GV7ev0fo4sPZ9_Zjff51_qk9Pa-dwI2srXdcN8wpECvFOUgJmNqVF8CdVa5xmnrPBeusld5pbJX1jRAdWSmlwTJ2hN5NudsUf42Qd2YI2UHf2w3EMRsiBNcCY67-g3JFNJO8KfTtX_Q6jmlTGtmrhhGB1T7w_aTKcHJO4M02hdL_nSHY7JdgyhLMnyUU-_o-cVwN0D3Kh6kXcDKBm9DD3b-TzOez9iGynipC3sHtY0WZv5ENa4RZfpmbbz_wYr5cXppF8W8m7200dp1CNhcLignf_wGuKWO_AePYqFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547315088</pqid></control><display><type>article</type><title>Coral feeding on microalgae assessed with molecular trophic markers</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Leal, Miguel C ; Ferrier‐Pagès, Christine ; Calado, Ricardo ; Thompson, Megan E ; Frischer, Marc E ; Nejstgaard, Jens C</creator><creatorcontrib>Leal, Miguel C ; Ferrier‐Pagès, Christine ; Calado, Ricardo ; Thompson, Megan E ; Frischer, Marc E ; Nejstgaard, Jens C</creatorcontrib><description>Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end‐point PCR amplification of algae‐specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12486</identifier><identifier>PMID: 24112432</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Algae ; Animals ; Anthozoa - physiology ; cacti and succulents ; coral feeding ; Coral reefs ; corals ; defense mechanisms ; DNA ; Food Chain ; genes ; Herbivores ; Herbivory ; heterotrophy ; Heteroxenia fuscescens ; Isochrysis galbana ; laboratory experimentation ; Marine biology ; Marine ecology ; microalgae ; Microalgae - genetics ; Oculina arbuscula ; Pavona cactus ; PCR ; Phaeocystis ; Phaeocystis globosa ; phytoplankton ; polymerase chain reaction ; predation ; predators ; Rhodomonas ; ribosomal RNA ; RNA, Ribosomal, 18S - analysis ; Scleractinia ; Sequence Analysis, DNA ; Sinularia ; Sinularia flexibilis ; specific primers ; Stylophora pistillata ; Symbiosis ; taxonomy ; Thalassiosira ; Thalassiosira pseudonana ; Tubastrea coccinea</subject><ispartof>Molecular ecology, 2014-08, Vol.23 (15), p.3870-3876</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5076-afc4973c8e5b844e66e02abf5e4ca8c7c92ff453daa6fc90a8af755d1b889ea33</citedby><cites>FETCH-LOGICAL-c5076-afc4973c8e5b844e66e02abf5e4ca8c7c92ff453daa6fc90a8af755d1b889ea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.12486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.12486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24112432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leal, Miguel C</creatorcontrib><creatorcontrib>Ferrier‐Pagès, Christine</creatorcontrib><creatorcontrib>Calado, Ricardo</creatorcontrib><creatorcontrib>Thompson, Megan E</creatorcontrib><creatorcontrib>Frischer, Marc E</creatorcontrib><creatorcontrib>Nejstgaard, Jens C</creatorcontrib><title>Coral feeding on microalgae assessed with molecular trophic markers</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end‐point PCR amplification of algae‐specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.</description><subject>Algae</subject><subject>Animals</subject><subject>Anthozoa - physiology</subject><subject>cacti and succulents</subject><subject>coral feeding</subject><subject>Coral reefs</subject><subject>corals</subject><subject>defense mechanisms</subject><subject>DNA</subject><subject>Food Chain</subject><subject>genes</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>heterotrophy</subject><subject>Heteroxenia fuscescens</subject><subject>Isochrysis galbana</subject><subject>laboratory experimentation</subject><subject>Marine biology</subject><subject>Marine ecology</subject><subject>microalgae</subject><subject>Microalgae - genetics</subject><subject>Oculina arbuscula</subject><subject>Pavona cactus</subject><subject>PCR</subject><subject>Phaeocystis</subject><subject>Phaeocystis globosa</subject><subject>phytoplankton</subject><subject>polymerase chain reaction</subject><subject>predation</subject><subject>predators</subject><subject>Rhodomonas</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 18S - analysis</subject><subject>Scleractinia</subject><subject>Sequence Analysis, DNA</subject><subject>Sinularia</subject><subject>Sinularia flexibilis</subject><subject>specific primers</subject><subject>Stylophora pistillata</subject><subject>Symbiosis</subject><subject>taxonomy</subject><subject>Thalassiosira</subject><subject>Thalassiosira pseudonana</subject><subject>Tubastrea coccinea</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0s9rFDEUB_Agit1WD_4DOuBFD9Pm9yTHMtRVqAqudXsL2czLNnVmsyY7tP3vzTptD4JgCOTyeV947wWhVwQfk3JOBnDHhHIln6AZYVLUVPPLp2iGtaQ1wYodoMOcrzEmjArxHB1QTopndIbaNibbVx6gC5t1FTfVEFyKtl9bqGzOUG5X3YTdVTXEHtzY21TtUtxeBVcNNv2ElF-gZ972GV7ev0fo4sPZ9_Zjff51_qk9Pa-dwI2srXdcN8wpECvFOUgJmNqVF8CdVa5xmnrPBeusld5pbJX1jRAdWSmlwTJ2hN5NudsUf42Qd2YI2UHf2w3EMRsiBNcCY67-g3JFNJO8KfTtX_Q6jmlTGtmrhhGB1T7w_aTKcHJO4M02hdL_nSHY7JdgyhLMnyUU-_o-cVwN0D3Kh6kXcDKBm9DD3b-TzOez9iGynipC3sHtY0WZv5ENa4RZfpmbbz_wYr5cXppF8W8m7200dp1CNhcLignf_wGuKWO_AePYqFI</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Leal, Miguel C</creator><creator>Ferrier‐Pagès, Christine</creator><creator>Calado, Ricardo</creator><creator>Thompson, Megan E</creator><creator>Frischer, Marc E</creator><creator>Nejstgaard, Jens C</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201408</creationdate><title>Coral feeding on microalgae assessed with molecular trophic markers</title><author>Leal, Miguel C ; Ferrier‐Pagès, Christine ; Calado, Ricardo ; Thompson, Megan E ; Frischer, Marc E ; Nejstgaard, Jens C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5076-afc4973c8e5b844e66e02abf5e4ca8c7c92ff453daa6fc90a8af755d1b889ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Anthozoa - physiology</topic><topic>cacti and succulents</topic><topic>coral feeding</topic><topic>Coral reefs</topic><topic>corals</topic><topic>defense mechanisms</topic><topic>DNA</topic><topic>Food Chain</topic><topic>genes</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>heterotrophy</topic><topic>Heteroxenia fuscescens</topic><topic>Isochrysis galbana</topic><topic>laboratory experimentation</topic><topic>Marine biology</topic><topic>Marine ecology</topic><topic>microalgae</topic><topic>Microalgae - genetics</topic><topic>Oculina arbuscula</topic><topic>Pavona cactus</topic><topic>PCR</topic><topic>Phaeocystis</topic><topic>Phaeocystis globosa</topic><topic>phytoplankton</topic><topic>polymerase chain reaction</topic><topic>predation</topic><topic>predators</topic><topic>Rhodomonas</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 18S - analysis</topic><topic>Scleractinia</topic><topic>Sequence Analysis, DNA</topic><topic>Sinularia</topic><topic>Sinularia flexibilis</topic><topic>specific primers</topic><topic>Stylophora pistillata</topic><topic>Symbiosis</topic><topic>taxonomy</topic><topic>Thalassiosira</topic><topic>Thalassiosira pseudonana</topic><topic>Tubastrea coccinea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leal, Miguel C</creatorcontrib><creatorcontrib>Ferrier‐Pagès, Christine</creatorcontrib><creatorcontrib>Calado, Ricardo</creatorcontrib><creatorcontrib>Thompson, Megan E</creatorcontrib><creatorcontrib>Frischer, Marc E</creatorcontrib><creatorcontrib>Nejstgaard, Jens C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leal, Miguel C</au><au>Ferrier‐Pagès, Christine</au><au>Calado, Ricardo</au><au>Thompson, Megan E</au><au>Frischer, Marc E</au><au>Nejstgaard, Jens C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coral feeding on microalgae assessed with molecular trophic markers</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2014-08</date><risdate>2014</risdate><volume>23</volume><issue>15</issue><spage>3870</spage><epage>3876</epage><pages>3870-3876</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end‐point PCR amplification of algae‐specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>24112432</pmid><doi>10.1111/mec.12486</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2014-08, Vol.23 (15), p.3870-3876
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_1554950048
source Wiley-Blackwell Journals; MEDLINE
subjects Algae
Animals
Anthozoa - physiology
cacti and succulents
coral feeding
Coral reefs
corals
defense mechanisms
DNA
Food Chain
genes
Herbivores
Herbivory
heterotrophy
Heteroxenia fuscescens
Isochrysis galbana
laboratory experimentation
Marine biology
Marine ecology
microalgae
Microalgae - genetics
Oculina arbuscula
Pavona cactus
PCR
Phaeocystis
Phaeocystis globosa
phytoplankton
polymerase chain reaction
predation
predators
Rhodomonas
ribosomal RNA
RNA, Ribosomal, 18S - analysis
Scleractinia
Sequence Analysis, DNA
Sinularia
Sinularia flexibilis
specific primers
Stylophora pistillata
Symbiosis
taxonomy
Thalassiosira
Thalassiosira pseudonana
Tubastrea coccinea
title Coral feeding on microalgae assessed with molecular trophic markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coral%20feeding%20on%20microalgae%20assessed%20with%20molecular%20trophic%20markers&rft.jtitle=Molecular%20ecology&rft.au=Leal,%20Miguel%20C&rft.date=2014-08&rft.volume=23&rft.issue=15&rft.spage=3870&rft.epage=3876&rft.pages=3870-3876&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12486&rft_dat=%3Cproquest_cross%3E1548193647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547315088&rft_id=info:pmid/24112432&rfr_iscdi=true