Urban drainage models - simplifying uncertainty analysis for practitioners
There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modi...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2013-01, Vol.68 (10), p.2136-2143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2143 |
---|---|
container_issue | 10 |
container_start_page | 2136 |
container_title | Water science and technology |
container_volume | 68 |
creator | VEZZARO, Luca MIKKELSEN, Peter Steen DELETIC, Ana MCCARTHY, David |
description | There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia. |
doi_str_mv | 10.2166/wst.2013.460 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554946598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464496095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6d21ecaa894831c4ad846e4278204135531ec688b63d7e89ec6206331fef28603</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTm2cJiODBznw1TY4y_GTgxZ1DlqYjo01n0iL9783cVPDiKYT8eHjfPACcYzQlmPPbj9hNCcJ0yjg6AGMsJc9kQckhGCNS0AwTQkfgJMY1QqigDB2DEWFEEpbLMXhZhKX2sAzaeb2ysGlLW0eYweiaTe2qwfkV7L2xoUuiG6D2uh6ii7BqA9wEbTrXudbbEE_BUaXraM_25wQsHu7fZk_Z_PXxeXY3zwwVpMt4SbA1WgvJBMWG6VIwbhkpBEEM0zyn6ZkLseS0LKyQ6UIQpxRXtiKCIzoB17vcTWjfexs71bhobF1rb9s-KpznTDKeS_E_ZZwxyZHME738Q9dtH9KySUlGRUrl28CbnTKhjTHYSm2Ca3QYFEZqW4dKdahtHYp9jXqxD-2XjS1_8Pf_J3C1BzoaXVdBe-PirxOIF7zA9BNogJDl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943815568</pqid></control><display><type>article</type><title>Urban drainage models - simplifying uncertainty analysis for practitioners</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>VEZZARO, Luca ; MIKKELSEN, Peter Steen ; DELETIC, Ana ; MCCARTHY, David</creator><creatorcontrib>VEZZARO, Luca ; MIKKELSEN, Peter Steen ; DELETIC, Ana ; MCCARTHY, David</creatorcontrib><description>There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2013.460</identifier><identifier>PMID: 24292459</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: International Water Association</publisher><subject>Applied sciences ; Case studies ; Cities ; Computer simulation ; Drainage systems ; Drainage, Sanitary ; Exact sciences and technology ; Methods ; Modelling ; Models, Statistical ; Monte Carlo Method ; Monte Carlo simulation ; Parameter estimation ; Pollution ; Probability theory ; Rain ; Rainfall ; Rainfall-runoff relationships ; Runoff ; Sensitivity analysis ; Uncertainty ; Uncertainty analysis ; Urban drainage ; Water quality ; Water treatment and pollution</subject><ispartof>Water science and technology, 2013-01, Vol.68 (10), p.2136-2143</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright IWA Publishing Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6d21ecaa894831c4ad846e4278204135531ec688b63d7e89ec6206331fef28603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067671$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24292459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VEZZARO, Luca</creatorcontrib><creatorcontrib>MIKKELSEN, Peter Steen</creatorcontrib><creatorcontrib>DELETIC, Ana</creatorcontrib><creatorcontrib>MCCARTHY, David</creatorcontrib><title>Urban drainage models - simplifying uncertainty analysis for practitioners</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.</description><subject>Applied sciences</subject><subject>Case studies</subject><subject>Cities</subject><subject>Computer simulation</subject><subject>Drainage systems</subject><subject>Drainage, Sanitary</subject><subject>Exact sciences and technology</subject><subject>Methods</subject><subject>Modelling</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Pollution</subject><subject>Probability theory</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall-runoff relationships</subject><subject>Runoff</subject><subject>Sensitivity analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Urban drainage</subject><subject>Water quality</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0c1LwzAYBvAgipvTm2cJiODBznw1TY4y_GTgxZ1DlqYjo01n0iL9783cVPDiKYT8eHjfPACcYzQlmPPbj9hNCcJ0yjg6AGMsJc9kQckhGCNS0AwTQkfgJMY1QqigDB2DEWFEEpbLMXhZhKX2sAzaeb2ysGlLW0eYweiaTe2qwfkV7L2xoUuiG6D2uh6ii7BqA9wEbTrXudbbEE_BUaXraM_25wQsHu7fZk_Z_PXxeXY3zwwVpMt4SbA1WgvJBMWG6VIwbhkpBEEM0zyn6ZkLseS0LKyQ6UIQpxRXtiKCIzoB17vcTWjfexs71bhobF1rb9s-KpznTDKeS_E_ZZwxyZHME738Q9dtH9KySUlGRUrl28CbnTKhjTHYSm2Ca3QYFEZqW4dKdahtHYp9jXqxD-2XjS1_8Pf_J3C1BzoaXVdBe-PirxOIF7zA9BNogJDl</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>VEZZARO, Luca</creator><creator>MIKKELSEN, Peter Steen</creator><creator>DELETIC, Ana</creator><creator>MCCARTHY, David</creator><general>International Water Association</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20130101</creationdate><title>Urban drainage models - simplifying uncertainty analysis for practitioners</title><author>VEZZARO, Luca ; MIKKELSEN, Peter Steen ; DELETIC, Ana ; MCCARTHY, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6d21ecaa894831c4ad846e4278204135531ec688b63d7e89ec6206331fef28603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Case studies</topic><topic>Cities</topic><topic>Computer simulation</topic><topic>Drainage systems</topic><topic>Drainage, Sanitary</topic><topic>Exact sciences and technology</topic><topic>Methods</topic><topic>Modelling</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Pollution</topic><topic>Probability theory</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall-runoff relationships</topic><topic>Runoff</topic><topic>Sensitivity analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Urban drainage</topic><topic>Water quality</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VEZZARO, Luca</creatorcontrib><creatorcontrib>MIKKELSEN, Peter Steen</creatorcontrib><creatorcontrib>DELETIC, Ana</creatorcontrib><creatorcontrib>MCCARTHY, David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VEZZARO, Luca</au><au>MIKKELSEN, Peter Steen</au><au>DELETIC, Ana</au><au>MCCARTHY, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban drainage models - simplifying uncertainty analysis for practitioners</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>68</volume><issue>10</issue><spage>2136</spage><epage>2143</epage><pages>2136-2143</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><coden>WSTED4</coden><abstract>There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.</abstract><cop>London</cop><pub>International Water Association</pub><pmid>24292459</pmid><doi>10.2166/wst.2013.460</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2013-01, Vol.68 (10), p.2136-2143 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_1554946598 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Applied sciences Case studies Cities Computer simulation Drainage systems Drainage, Sanitary Exact sciences and technology Methods Modelling Models, Statistical Monte Carlo Method Monte Carlo simulation Parameter estimation Pollution Probability theory Rain Rainfall Rainfall-runoff relationships Runoff Sensitivity analysis Uncertainty Uncertainty analysis Urban drainage Water quality Water treatment and pollution |
title | Urban drainage models - simplifying uncertainty analysis for practitioners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20drainage%20models%20-%20simplifying%20uncertainty%20analysis%20for%20practitioners&rft.jtitle=Water%20science%20and%20technology&rft.au=VEZZARO,%20Luca&rft.date=2013-01-01&rft.volume=68&rft.issue=10&rft.spage=2136&rft.epage=2143&rft.pages=2136-2143&rft.issn=0273-1223&rft.eissn=1996-9732&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2013.460&rft_dat=%3Cproquest_cross%3E1464496095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943815568&rft_id=info:pmid/24292459&rfr_iscdi=true |