Urban drainage models - simplifying uncertainty analysis for practitioners

There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2013-01, Vol.68 (10), p.2136-2143
Hauptverfasser: VEZZARO, Luca, MIKKELSEN, Peter Steen, DELETIC, Ana, MCCARTHY, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2143
container_issue 10
container_start_page 2136
container_title Water science and technology
container_volume 68
creator VEZZARO, Luca
MIKKELSEN, Peter Steen
DELETIC, Ana
MCCARTHY, David
description There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.
doi_str_mv 10.2166/wst.2013.460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554946598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464496095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6d21ecaa894831c4ad846e4278204135531ec688b63d7e89ec6206331fef28603</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTm2cJiODBznw1TY4y_GTgxZ1DlqYjo01n0iL9783cVPDiKYT8eHjfPACcYzQlmPPbj9hNCcJ0yjg6AGMsJc9kQckhGCNS0AwTQkfgJMY1QqigDB2DEWFEEpbLMXhZhKX2sAzaeb2ysGlLW0eYweiaTe2qwfkV7L2xoUuiG6D2uh6ii7BqA9wEbTrXudbbEE_BUaXraM_25wQsHu7fZk_Z_PXxeXY3zwwVpMt4SbA1WgvJBMWG6VIwbhkpBEEM0zyn6ZkLseS0LKyQ6UIQpxRXtiKCIzoB17vcTWjfexs71bhobF1rb9s-KpznTDKeS_E_ZZwxyZHME738Q9dtH9KySUlGRUrl28CbnTKhjTHYSm2Ca3QYFEZqW4dKdahtHYp9jXqxD-2XjS1_8Pf_J3C1BzoaXVdBe-PirxOIF7zA9BNogJDl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943815568</pqid></control><display><type>article</type><title>Urban drainage models - simplifying uncertainty analysis for practitioners</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>VEZZARO, Luca ; MIKKELSEN, Peter Steen ; DELETIC, Ana ; MCCARTHY, David</creator><creatorcontrib>VEZZARO, Luca ; MIKKELSEN, Peter Steen ; DELETIC, Ana ; MCCARTHY, David</creatorcontrib><description>There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2013.460</identifier><identifier>PMID: 24292459</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: International Water Association</publisher><subject>Applied sciences ; Case studies ; Cities ; Computer simulation ; Drainage systems ; Drainage, Sanitary ; Exact sciences and technology ; Methods ; Modelling ; Models, Statistical ; Monte Carlo Method ; Monte Carlo simulation ; Parameter estimation ; Pollution ; Probability theory ; Rain ; Rainfall ; Rainfall-runoff relationships ; Runoff ; Sensitivity analysis ; Uncertainty ; Uncertainty analysis ; Urban drainage ; Water quality ; Water treatment and pollution</subject><ispartof>Water science and technology, 2013-01, Vol.68 (10), p.2136-2143</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright IWA Publishing Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6d21ecaa894831c4ad846e4278204135531ec688b63d7e89ec6206331fef28603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28067671$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24292459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VEZZARO, Luca</creatorcontrib><creatorcontrib>MIKKELSEN, Peter Steen</creatorcontrib><creatorcontrib>DELETIC, Ana</creatorcontrib><creatorcontrib>MCCARTHY, David</creatorcontrib><title>Urban drainage models - simplifying uncertainty analysis for practitioners</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.</description><subject>Applied sciences</subject><subject>Case studies</subject><subject>Cities</subject><subject>Computer simulation</subject><subject>Drainage systems</subject><subject>Drainage, Sanitary</subject><subject>Exact sciences and technology</subject><subject>Methods</subject><subject>Modelling</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Pollution</subject><subject>Probability theory</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall-runoff relationships</subject><subject>Runoff</subject><subject>Sensitivity analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Urban drainage</subject><subject>Water quality</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0c1LwzAYBvAgipvTm2cJiODBznw1TY4y_GTgxZ1DlqYjo01n0iL9783cVPDiKYT8eHjfPACcYzQlmPPbj9hNCcJ0yjg6AGMsJc9kQckhGCNS0AwTQkfgJMY1QqigDB2DEWFEEpbLMXhZhKX2sAzaeb2ysGlLW0eYweiaTe2qwfkV7L2xoUuiG6D2uh6ii7BqA9wEbTrXudbbEE_BUaXraM_25wQsHu7fZk_Z_PXxeXY3zwwVpMt4SbA1WgvJBMWG6VIwbhkpBEEM0zyn6ZkLseS0LKyQ6UIQpxRXtiKCIzoB17vcTWjfexs71bhobF1rb9s-KpznTDKeS_E_ZZwxyZHME738Q9dtH9KySUlGRUrl28CbnTKhjTHYSm2Ca3QYFEZqW4dKdahtHYp9jXqxD-2XjS1_8Pf_J3C1BzoaXVdBe-PirxOIF7zA9BNogJDl</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>VEZZARO, Luca</creator><creator>MIKKELSEN, Peter Steen</creator><creator>DELETIC, Ana</creator><creator>MCCARTHY, David</creator><general>International Water Association</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20130101</creationdate><title>Urban drainage models - simplifying uncertainty analysis for practitioners</title><author>VEZZARO, Luca ; MIKKELSEN, Peter Steen ; DELETIC, Ana ; MCCARTHY, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6d21ecaa894831c4ad846e4278204135531ec688b63d7e89ec6206331fef28603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Case studies</topic><topic>Cities</topic><topic>Computer simulation</topic><topic>Drainage systems</topic><topic>Drainage, Sanitary</topic><topic>Exact sciences and technology</topic><topic>Methods</topic><topic>Modelling</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Pollution</topic><topic>Probability theory</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall-runoff relationships</topic><topic>Runoff</topic><topic>Sensitivity analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Urban drainage</topic><topic>Water quality</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VEZZARO, Luca</creatorcontrib><creatorcontrib>MIKKELSEN, Peter Steen</creatorcontrib><creatorcontrib>DELETIC, Ana</creatorcontrib><creatorcontrib>MCCARTHY, David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VEZZARO, Luca</au><au>MIKKELSEN, Peter Steen</au><au>DELETIC, Ana</au><au>MCCARTHY, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban drainage models - simplifying uncertainty analysis for practitioners</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>68</volume><issue>10</issue><spage>2136</spage><epage>2143</epage><pages>2136-2143</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><coden>WSTED4</coden><abstract>There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.</abstract><cop>London</cop><pub>International Water Association</pub><pmid>24292459</pmid><doi>10.2166/wst.2013.460</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2013-01, Vol.68 (10), p.2136-2143
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_1554946598
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Case studies
Cities
Computer simulation
Drainage systems
Drainage, Sanitary
Exact sciences and technology
Methods
Modelling
Models, Statistical
Monte Carlo Method
Monte Carlo simulation
Parameter estimation
Pollution
Probability theory
Rain
Rainfall
Rainfall-runoff relationships
Runoff
Sensitivity analysis
Uncertainty
Uncertainty analysis
Urban drainage
Water quality
Water treatment and pollution
title Urban drainage models - simplifying uncertainty analysis for practitioners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20drainage%20models%20-%20simplifying%20uncertainty%20analysis%20for%20practitioners&rft.jtitle=Water%20science%20and%20technology&rft.au=VEZZARO,%20Luca&rft.date=2013-01-01&rft.volume=68&rft.issue=10&rft.spage=2136&rft.epage=2143&rft.pages=2136-2143&rft.issn=0273-1223&rft.eissn=1996-9732&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2013.460&rft_dat=%3Cproquest_cross%3E1464496095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943815568&rft_id=info:pmid/24292459&rfr_iscdi=true