Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer

Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2014-07, Vol.33 (31), p.4097-4106
Hauptverfasser: Mishra, S, Deng, J J, Gowda, P S, Rao, M K, Lin, C-L, Chen, C L, Huang, T, Sun, L-Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4106
container_issue 31
container_start_page 4097
container_title Oncogene
container_volume 33
creator Mishra, S
Deng, J J
Gowda, P S
Rao, M K
Lin, C-L
Chen, C L
Huang, T
Sun, L-Z
description Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling had a critical role in inhibiting TGFβ receptor II (TGFBR2) expression in prostate cancer cells. Our results revealed that miR-21 suppresses TGFBR2 levels by binding to its 3′-UTR and AR signaling further potentiates this effect in both untransformed and transformed human prostate epithelial cells as well as in human prostate cancers. Analysis of primary prostate cancers showed that increased miR-21/AR expression parallel a significantly reduced expression of TGFBR2. Manipulation of androgen signaling or the expression levels of AR or miR-21 negatively altered TGFBR2 expression in untransformed and transformed human prostate epithelial cells, human prostate cancer xenografts and mouse prostate glands. Importantly, we demonstrated that miR-21 and AR regulated each other’s expression resulting in a positive feedback loop. Our results indicated that miR-21/AR mediate its tumor-promoting function by attenuating TGFβ-mediated Smad2/3 activation, cell growth inhibition, cell migration and apoptosis. Together, these results suggest that the AR and miR-21 axis exerts its oncogenic effects in prostate tumors by downregulating TGFBR2, hence inhibiting the tumor-suppressive activity of TGFβ pathway. Targeting miR-21 alone or in combination with AR may restore the tumor inhibitory activity of TGFβ in prostate cancer.
doi_str_mv 10.1038/onc.2013.374
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554946489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A381056244</galeid><sourcerecordid>A381056244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-7f5ab05e9b55471f65754811f820718687b0aeabfd4fea25f7a68a78697916863</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7LZ657UEvKngrPn-uFyLrQtFodTrkJk5GafsJmsyQ-sv8G-b6VarUkRyEch5znvOyXmr6gXBS4KZfhtDu6SYsCVT_FG1IFzJWgjDH1cLbASuDWX0oDrM-QpjrAymT6sDyjFTgpFF9X0VuhR7CChBC7sxJuRCh7ZDm-LFx1VNCXI3Q0ZdvA4J-mnjRshoTC5kH9N2CD3qU7wevyDv2jm7gdHda63X6Pjy7PTdBX2N4GaXIOchBjQEtEsxj0UMtS60kJ5VT7zbZHh-dx9Vn0_fX558qM8_na1PVud1K4UZa-WFa7AA0wjBFfFSKME1IV5TrIiWWjXYgWt8xz04KrxyUjulpVGGSC3ZUXW81y31v06QR7sdcgubjQsQp2xJ0TVccm3-ByWYaI5n9NVf6FWcUiiDWCo5EYwqxf9FkVLVUEkYuad6twE7BB_Lb7dzabtimmAhKZ-1lg9Q5XRQdhcD-KG8_5HwZp9QFptzAm93adi69M0SbGcj2WIkOxvJstteX971OjVb6H7BP51TgHoP5BIKPaTfhnlI8AeB8s7x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549926131</pqid></control><display><type>article</type><title>Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mishra, S ; Deng, J J ; Gowda, P S ; Rao, M K ; Lin, C-L ; Chen, C L ; Huang, T ; Sun, L-Z</creator><creatorcontrib>Mishra, S ; Deng, J J ; Gowda, P S ; Rao, M K ; Lin, C-L ; Chen, C L ; Huang, T ; Sun, L-Z</creatorcontrib><description>Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling had a critical role in inhibiting TGFβ receptor II (TGFBR2) expression in prostate cancer cells. Our results revealed that miR-21 suppresses TGFBR2 levels by binding to its 3′-UTR and AR signaling further potentiates this effect in both untransformed and transformed human prostate epithelial cells as well as in human prostate cancers. Analysis of primary prostate cancers showed that increased miR-21/AR expression parallel a significantly reduced expression of TGFBR2. Manipulation of androgen signaling or the expression levels of AR or miR-21 negatively altered TGFBR2 expression in untransformed and transformed human prostate epithelial cells, human prostate cancer xenografts and mouse prostate glands. Importantly, we demonstrated that miR-21 and AR regulated each other’s expression resulting in a positive feedback loop. Our results indicated that miR-21/AR mediate its tumor-promoting function by attenuating TGFβ-mediated Smad2/3 activation, cell growth inhibition, cell migration and apoptosis. Together, these results suggest that the AR and miR-21 axis exerts its oncogenic effects in prostate tumors by downregulating TGFBR2, hence inhibiting the tumor-suppressive activity of TGFβ pathway. Targeting miR-21 alone or in combination with AR may restore the tumor inhibitory activity of TGFβ in prostate cancer.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2013.374</identifier><identifier>PMID: 24037531</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated regions ; 631/337/384/331 ; 631/45/612/822 ; 631/67/581 ; 692/699/67/589/466 ; Androgen receptors ; Androgens ; Animals ; Apoptosis ; Cell activation ; Cell Biology ; Cell Line, Tumor ; Cell migration ; Cell receptors ; Cellular biology ; Development and progression ; Epithelial cells ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Growth factors ; Human Genetics ; Humans ; Internal Medicine ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; MicroRNA ; MicroRNAs ; MicroRNAs - metabolism ; miRNA ; Neoplasms, Experimental ; Oncology ; original-article ; Properties ; Prostate cancer ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Receptors, Androgen - metabolism ; Receptors, Transforming Growth Factor beta - genetics ; Receptors, Transforming Growth Factor beta - metabolism ; Smad2 protein ; Transforming growth factor-b ; Tumors ; Xenografts</subject><ispartof>Oncogene, 2014-07, Vol.33 (31), p.4097-4106</ispartof><rights>Macmillan Publishers Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 31, 2014</rights><rights>Macmillan Publishers Limited 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-7f5ab05e9b55471f65754811f820718687b0aeabfd4fea25f7a68a78697916863</citedby><cites>FETCH-LOGICAL-c659t-7f5ab05e9b55471f65754811f820718687b0aeabfd4fea25f7a68a78697916863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2013.374$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2013.374$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24037531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, S</creatorcontrib><creatorcontrib>Deng, J J</creatorcontrib><creatorcontrib>Gowda, P S</creatorcontrib><creatorcontrib>Rao, M K</creatorcontrib><creatorcontrib>Lin, C-L</creatorcontrib><creatorcontrib>Chen, C L</creatorcontrib><creatorcontrib>Huang, T</creatorcontrib><creatorcontrib>Sun, L-Z</creatorcontrib><title>Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling had a critical role in inhibiting TGFβ receptor II (TGFBR2) expression in prostate cancer cells. Our results revealed that miR-21 suppresses TGFBR2 levels by binding to its 3′-UTR and AR signaling further potentiates this effect in both untransformed and transformed human prostate epithelial cells as well as in human prostate cancers. Analysis of primary prostate cancers showed that increased miR-21/AR expression parallel a significantly reduced expression of TGFBR2. Manipulation of androgen signaling or the expression levels of AR or miR-21 negatively altered TGFBR2 expression in untransformed and transformed human prostate epithelial cells, human prostate cancer xenografts and mouse prostate glands. Importantly, we demonstrated that miR-21 and AR regulated each other’s expression resulting in a positive feedback loop. Our results indicated that miR-21/AR mediate its tumor-promoting function by attenuating TGFβ-mediated Smad2/3 activation, cell growth inhibition, cell migration and apoptosis. Together, these results suggest that the AR and miR-21 axis exerts its oncogenic effects in prostate tumors by downregulating TGFBR2, hence inhibiting the tumor-suppressive activity of TGFβ pathway. Targeting miR-21 alone or in combination with AR may restore the tumor inhibitory activity of TGFβ in prostate cancer.</description><subject>3' Untranslated regions</subject><subject>631/337/384/331</subject><subject>631/45/612/822</subject><subject>631/67/581</subject><subject>692/699/67/589/466</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell receptors</subject><subject>Cellular biology</subject><subject>Development and progression</subject><subject>Epithelial cells</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Growth factors</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Neoplasms, Experimental</subject><subject>Oncology</subject><subject>original-article</subject><subject>Properties</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Receptors, Androgen - metabolism</subject><subject>Receptors, Transforming Growth Factor beta - genetics</subject><subject>Receptors, Transforming Growth Factor beta - metabolism</subject><subject>Smad2 protein</subject><subject>Transforming growth factor-b</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFDEUhgdR7LZ657UEvKngrPn-uFyLrQtFodTrkJk5GafsJmsyQ-sv8G-b6VarUkRyEch5znvOyXmr6gXBS4KZfhtDu6SYsCVT_FG1IFzJWgjDH1cLbASuDWX0oDrM-QpjrAymT6sDyjFTgpFF9X0VuhR7CChBC7sxJuRCh7ZDm-LFx1VNCXI3Q0ZdvA4J-mnjRshoTC5kH9N2CD3qU7wevyDv2jm7gdHda63X6Pjy7PTdBX2N4GaXIOchBjQEtEsxj0UMtS60kJ5VT7zbZHh-dx9Vn0_fX558qM8_na1PVud1K4UZa-WFa7AA0wjBFfFSKME1IV5TrIiWWjXYgWt8xz04KrxyUjulpVGGSC3ZUXW81y31v06QR7sdcgubjQsQp2xJ0TVccm3-ByWYaI5n9NVf6FWcUiiDWCo5EYwqxf9FkVLVUEkYuad6twE7BB_Lb7dzabtimmAhKZ-1lg9Q5XRQdhcD-KG8_5HwZp9QFptzAm93adi69M0SbGcj2WIkOxvJstteX971OjVb6H7BP51TgHoP5BIKPaTfhnlI8AeB8s7x</recordid><startdate>20140731</startdate><enddate>20140731</enddate><creator>Mishra, S</creator><creator>Deng, J J</creator><creator>Gowda, P S</creator><creator>Rao, M K</creator><creator>Lin, C-L</creator><creator>Chen, C L</creator><creator>Huang, T</creator><creator>Sun, L-Z</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140731</creationdate><title>Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer</title><author>Mishra, S ; Deng, J J ; Gowda, P S ; Rao, M K ; Lin, C-L ; Chen, C L ; Huang, T ; Sun, L-Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-7f5ab05e9b55471f65754811f820718687b0aeabfd4fea25f7a68a78697916863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3' Untranslated regions</topic><topic>631/337/384/331</topic><topic>631/45/612/822</topic><topic>631/67/581</topic><topic>692/699/67/589/466</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell receptors</topic><topic>Cellular biology</topic><topic>Development and progression</topic><topic>Epithelial cells</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Growth factors</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Neoplasms, Experimental</topic><topic>Oncology</topic><topic>original-article</topic><topic>Properties</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Receptors, Androgen - metabolism</topic><topic>Receptors, Transforming Growth Factor beta - genetics</topic><topic>Receptors, Transforming Growth Factor beta - metabolism</topic><topic>Smad2 protein</topic><topic>Transforming growth factor-b</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, S</creatorcontrib><creatorcontrib>Deng, J J</creatorcontrib><creatorcontrib>Gowda, P S</creatorcontrib><creatorcontrib>Rao, M K</creatorcontrib><creatorcontrib>Lin, C-L</creatorcontrib><creatorcontrib>Chen, C L</creatorcontrib><creatorcontrib>Huang, T</creatorcontrib><creatorcontrib>Sun, L-Z</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, S</au><au>Deng, J J</au><au>Gowda, P S</au><au>Rao, M K</au><au>Lin, C-L</au><au>Chen, C L</au><au>Huang, T</au><au>Sun, L-Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2014-07-31</date><risdate>2014</risdate><volume>33</volume><issue>31</issue><spage>4097</spage><epage>4106</epage><pages>4097-4106</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling had a critical role in inhibiting TGFβ receptor II (TGFBR2) expression in prostate cancer cells. Our results revealed that miR-21 suppresses TGFBR2 levels by binding to its 3′-UTR and AR signaling further potentiates this effect in both untransformed and transformed human prostate epithelial cells as well as in human prostate cancers. Analysis of primary prostate cancers showed that increased miR-21/AR expression parallel a significantly reduced expression of TGFBR2. Manipulation of androgen signaling or the expression levels of AR or miR-21 negatively altered TGFBR2 expression in untransformed and transformed human prostate epithelial cells, human prostate cancer xenografts and mouse prostate glands. Importantly, we demonstrated that miR-21 and AR regulated each other’s expression resulting in a positive feedback loop. Our results indicated that miR-21/AR mediate its tumor-promoting function by attenuating TGFβ-mediated Smad2/3 activation, cell growth inhibition, cell migration and apoptosis. Together, these results suggest that the AR and miR-21 axis exerts its oncogenic effects in prostate tumors by downregulating TGFBR2, hence inhibiting the tumor-suppressive activity of TGFβ pathway. Targeting miR-21 alone or in combination with AR may restore the tumor inhibitory activity of TGFβ in prostate cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24037531</pmid><doi>10.1038/onc.2013.374</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2014-07, Vol.33 (31), p.4097-4106
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_1554946489
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3' Untranslated regions
631/337/384/331
631/45/612/822
631/67/581
692/699/67/589/466
Androgen receptors
Androgens
Animals
Apoptosis
Cell activation
Cell Biology
Cell Line, Tumor
Cell migration
Cell receptors
Cellular biology
Development and progression
Epithelial cells
Gene Expression Regulation, Neoplastic
Genetic aspects
Growth factors
Human Genetics
Humans
Internal Medicine
Male
Medicine
Medicine & Public Health
Mice
Mice, Inbred BALB C
Mice, Nude
MicroRNA
MicroRNAs
MicroRNAs - metabolism
miRNA
Neoplasms, Experimental
Oncology
original-article
Properties
Prostate cancer
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Receptors, Androgen - metabolism
Receptors, Transforming Growth Factor beta - genetics
Receptors, Transforming Growth Factor beta - metabolism
Smad2 protein
Transforming growth factor-b
Tumors
Xenografts
title Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Androgen%20receptor%20and%20microRNA-21%20axis%20downregulates%20transforming%20growth%20factor%20beta%20receptor%20II%20(TGFBR2)%20expression%20in%20prostate%20cancer&rft.jtitle=Oncogene&rft.au=Mishra,%20S&rft.date=2014-07-31&rft.volume=33&rft.issue=31&rft.spage=4097&rft.epage=4106&rft.pages=4097-4106&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2013.374&rft_dat=%3Cgale_proqu%3EA381056244%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549926131&rft_id=info:pmid/24037531&rft_galeid=A381056244&rfr_iscdi=true