Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms

MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain topography 2014-07, Vol.27 (4), p.428-437
Hauptverfasser: Giard, Marie-Hélène, Besle, Julien, Aguera, Pierre-Emmanuel, Gomot, Marie, Bertrand, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 4
container_start_page 428
container_title Brain topography
container_volume 27
creator Giard, Marie-Hélène
Besle, Julien
Aguera, Pierre-Emmanuel
Gomot, Marie
Bertrand, Olivier
description MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)—or surface Laplacian—computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.
doi_str_mv 10.1007/s10548-013-0324-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554945017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1542297282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-aaff4393660db434097aa9fb05be1063f2fa663bc735a9f108346aed72291da63</originalsourceid><addsrcrecordid>eNqNkU1LHEEQhpsQ0Y36A3IJDbl4Ga3-njnKJiaCX6A5NzUzPWvLfKV7JrD_3l5XgwiCp4Kqp96ieAj5yuCYAZiTyEDJPAMmMhBcZvknsmDKiEybgn8mC8gLnQHXZo98ifEBAERhzC7Z45JpzYEvyNVthe1Il3MIrp_oD9dHP63pJY6j71fU93S6d_S0x3YdfaRDQy997HCq7umVW-Hk_23wGwxY-1UXD8hOg210h891n_w5-3m3_J1dXP86X55eZJU0asoQm0aKQmgNdSmFhMIgFk0JqnQMtGh4g1qLsjJCpT6DXEiNrjacF6xGLfbJ0TZ3DMPf2cXJdj5Wrm2xd8McLVNKFlIBMx9AZUo1POcJ_f4GfRjmkH5_opjOlTYiUWxLVWGIMbjGjsF3GNaWgd14sVsvNnmxGy82TzvfnpPnsnP1_40XEQngWyCmUb9y4dXpd1MfAYxUliQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541685673</pqid></control><display><type>article</type><title>Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Giard, Marie-Hélène ; Besle, Julien ; Aguera, Pierre-Emmanuel ; Gomot, Marie ; Bertrand, Olivier</creator><creatorcontrib>Giard, Marie-Hélène ; Besle, Julien ; Aguera, Pierre-Emmanuel ; Gomot, Marie ; Bertrand, Olivier</creatorcontrib><description>MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)—or surface Laplacian—computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.</description><identifier>ISSN: 0896-0267</identifier><identifier>EISSN: 1573-6792</identifier><identifier>DOI: 10.1007/s10548-013-0324-8</identifier><identifier>PMID: 24166202</identifier><identifier>CODEN: BRTOEZ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Brain Mapping - methods ; Evoked Potentials, Auditory ; Humans ; Neurology ; Neurosciences ; Psychiatry ; Review ; Scalp - innervation</subject><ispartof>Brain topography, 2014-07, Vol.27 (4), p.428-437</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-aaff4393660db434097aa9fb05be1063f2fa663bc735a9f108346aed72291da63</citedby><cites>FETCH-LOGICAL-c475t-aaff4393660db434097aa9fb05be1063f2fa663bc735a9f108346aed72291da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10548-013-0324-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10548-013-0324-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24166202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giard, Marie-Hélène</creatorcontrib><creatorcontrib>Besle, Julien</creatorcontrib><creatorcontrib>Aguera, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Gomot, Marie</creatorcontrib><creatorcontrib>Bertrand, Olivier</creatorcontrib><title>Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms</title><title>Brain topography</title><addtitle>Brain Topogr</addtitle><addtitle>Brain Topogr</addtitle><description>MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)—or surface Laplacian—computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Evoked Potentials, Auditory</subject><subject>Humans</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Psychiatry</subject><subject>Review</subject><subject>Scalp - innervation</subject><issn>0896-0267</issn><issn>1573-6792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1LHEEQhpsQ0Y36A3IJDbl4Ga3-njnKJiaCX6A5NzUzPWvLfKV7JrD_3l5XgwiCp4Kqp96ieAj5yuCYAZiTyEDJPAMmMhBcZvknsmDKiEybgn8mC8gLnQHXZo98ifEBAERhzC7Z45JpzYEvyNVthe1Il3MIrp_oD9dHP63pJY6j71fU93S6d_S0x3YdfaRDQy997HCq7umVW-Hk_23wGwxY-1UXD8hOg210h891n_w5-3m3_J1dXP86X55eZJU0asoQm0aKQmgNdSmFhMIgFk0JqnQMtGh4g1qLsjJCpT6DXEiNrjacF6xGLfbJ0TZ3DMPf2cXJdj5Wrm2xd8McLVNKFlIBMx9AZUo1POcJ_f4GfRjmkH5_opjOlTYiUWxLVWGIMbjGjsF3GNaWgd14sVsvNnmxGy82TzvfnpPnsnP1_40XEQngWyCmUb9y4dXpd1MfAYxUliQ</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Giard, Marie-Hélène</creator><creator>Besle, Julien</creator><creator>Aguera, Pierre-Emmanuel</creator><creator>Gomot, Marie</creator><creator>Bertrand, Olivier</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140701</creationdate><title>Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms</title><author>Giard, Marie-Hélène ; Besle, Julien ; Aguera, Pierre-Emmanuel ; Gomot, Marie ; Bertrand, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-aaff4393660db434097aa9fb05be1063f2fa663bc735a9f108346aed72291da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Evoked Potentials, Auditory</topic><topic>Humans</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Psychiatry</topic><topic>Review</topic><topic>Scalp - innervation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giard, Marie-Hélène</creatorcontrib><creatorcontrib>Besle, Julien</creatorcontrib><creatorcontrib>Aguera, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Gomot, Marie</creatorcontrib><creatorcontrib>Bertrand, Olivier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain topography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giard, Marie-Hélène</au><au>Besle, Julien</au><au>Aguera, Pierre-Emmanuel</au><au>Gomot, Marie</au><au>Bertrand, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms</atitle><jtitle>Brain topography</jtitle><stitle>Brain Topogr</stitle><addtitle>Brain Topogr</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>27</volume><issue>4</issue><spage>428</spage><epage>437</epage><pages>428-437</pages><issn>0896-0267</issn><eissn>1573-6792</eissn><coden>BRTOEZ</coden><abstract>MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)—or surface Laplacian—computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24166202</pmid><doi>10.1007/s10548-013-0324-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0896-0267
ispartof Brain topography, 2014-07, Vol.27 (4), p.428-437
issn 0896-0267
1573-6792
language eng
recordid cdi_proquest_miscellaneous_1554945017
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedicine
Brain - physiology
Brain Mapping - methods
Evoked Potentials, Auditory
Humans
Neurology
Neurosciences
Psychiatry
Review
Scalp - innervation
title Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalp%20Current%20Density%20Mapping%20in%20the%20Analysis%20of%20Mismatch%20Negativity%20Paradigms&rft.jtitle=Brain%20topography&rft.au=Giard,%20Marie-H%C3%A9l%C3%A8ne&rft.date=2014-07-01&rft.volume=27&rft.issue=4&rft.spage=428&rft.epage=437&rft.pages=428-437&rft.issn=0896-0267&rft.eissn=1573-6792&rft.coden=BRTOEZ&rft_id=info:doi/10.1007/s10548-013-0324-8&rft_dat=%3Cproquest_cross%3E1542297282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541685673&rft_id=info:pmid/24166202&rfr_iscdi=true