Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers

Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2014-10, Vol.9 (5), p.055001-055001
Hauptverfasser: Yuan, Huihua, Li, Biyun, Liang, Kai, Lou, Xiangxin, Zhang, Yanzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055001
container_issue 5
container_start_page 055001
container_title Biomedical materials (Bristol)
container_volume 9
creator Yuan, Huihua
Li, Biyun
Liang, Kai
Lou, Xiangxin
Zhang, Yanzhong
description Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have rarely been explored. In this study, chitosan-graft-poly(N-isopropylacrylamide) (CTS-g-PNIPAAm) copolymer was synthesized by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS) as grafting agents to graft carboxyl-terminated PNIPAAm (PNIPAAm-COOH) chains onto the CTS biomacromolecules, and then CTS-g-PNIPAAm with or without bovine serum albumin (BSA) was fabricated into nanofibers through electrospinning using poly(ethylene oxide) (PEO, 10 wt%) as a fiber-forming facilitating additive. The BSA laden CTS-g-PNIPAAm/PEO hydrogel nanofibers were tested to determine their drug release profiles by varying pH and temperature. Finally, cytotoxicity of the CTS-g-PNIPAAm/PEO hydrogel nanofibers was evaluated by assaying the L929 cell proliferation using the MTT method. It was found that the synthesized CTS-g-PNIPAAm possessed a temperature-induced phase transition and lower critical solution temperature (LCST) at 32° C in aqueous solutions. The rate of BSA release could be well modulated by altering the environmental pH and temperature of the hydrogel nanofibers. The CTS-g-PNIPAAm/PEO hydrogel nanofibers supported L929 cell growth, indicative of appropriate cytocompatibility. Our current work could pave the way towards developing multi-stimuli responsive nanofibrous smart materials for potential applications in the fields of drug delivery and tissue engineering.
doi_str_mv 10.1088/1748-6041/9/5/055001
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554941237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1554941237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-eeec53579619d3e3d3adba56632a3b6647d907f73c2a40069bbc97031c0a8d403</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpyPc_KEXH5OB6tJJs67gsaRIIbUi20JuQrbHXwZZcyS7ZS357vOw2x55mGJ6Z4X0I-cLgG4OiSFkuiiQDwVKVyhSkBGCfyOlhLH9__ugFOyFnMb4ASCW5OiYnC8m4ZKBOydsTNlNnxtY11IapoQE7NBFpHXxPh7uEGmfpiP2AwYxTwCRgHLyL7V-kM1qNwcdhcnS1fk6a5PHH_eNy2aeD77ZXOG62HTqk_rW1eE03Wxt8gx11xvm6LTHEC3JUmy7i5aGek1_fb9aru-Th5-39avmQVLyQY4KIleQyVxlTliO33NjSyCzjC8PLLBO5VZDXOa8WRgBkqiwrlQNnFZjCCuDn5Gp_dwj-z4Rx1H0bK-w649BPUTMphRJswfMZFXu0mpPFgLUeQtubsNUM9M683mnVO61aaan35ue1r4cPU9mj_Vj6p3oGYA-0ftAvfgpuDvz_m-9SYo4r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554941237</pqid></control><display><type>article</type><title>Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yuan, Huihua ; Li, Biyun ; Liang, Kai ; Lou, Xiangxin ; Zhang, Yanzhong</creator><creatorcontrib>Yuan, Huihua ; Li, Biyun ; Liang, Kai ; Lou, Xiangxin ; Zhang, Yanzhong</creatorcontrib><description>Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have rarely been explored. In this study, chitosan-graft-poly(N-isopropylacrylamide) (CTS-g-PNIPAAm) copolymer was synthesized by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS) as grafting agents to graft carboxyl-terminated PNIPAAm (PNIPAAm-COOH) chains onto the CTS biomacromolecules, and then CTS-g-PNIPAAm with or without bovine serum albumin (BSA) was fabricated into nanofibers through electrospinning using poly(ethylene oxide) (PEO, 10 wt%) as a fiber-forming facilitating additive. The BSA laden CTS-g-PNIPAAm/PEO hydrogel nanofibers were tested to determine their drug release profiles by varying pH and temperature. Finally, cytotoxicity of the CTS-g-PNIPAAm/PEO hydrogel nanofibers was evaluated by assaying the L929 cell proliferation using the MTT method. It was found that the synthesized CTS-g-PNIPAAm possessed a temperature-induced phase transition and lower critical solution temperature (LCST) at 32° C in aqueous solutions. The rate of BSA release could be well modulated by altering the environmental pH and temperature of the hydrogel nanofibers. The CTS-g-PNIPAAm/PEO hydrogel nanofibers supported L929 cell growth, indicative of appropriate cytocompatibility. Our current work could pave the way towards developing multi-stimuli responsive nanofibrous smart materials for potential applications in the fields of drug delivery and tissue engineering.</description><identifier>ISSN: 1748-6041</identifier><identifier>ISSN: 1748-605X</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-6041/9/5/055001</identifier><identifier>PMID: 25135109</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Acrylic Resins - chemistry ; Acrylic Resins - toxicity ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - toxicity ; Cattle ; Cell Line ; Cell Proliferation - drug effects ; Chitosan - analogs &amp; derivatives ; Chitosan - chemistry ; Chitosan - toxicity ; CTS-g-PNIPAAm ; drug delivery ; Drug Delivery Systems ; Electrochemical Techniques ; electrospinning ; Hydrogels ; Hydrogen-Ion Concentration ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; Molecular Structure ; Nanofibers - chemistry ; Nanofibers - toxicity ; Nanofibers - ultrastructure ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - toxicity ; Serum Albumin, Bovine - administration &amp; dosage ; Serum Albumin, Bovine - pharmacokinetics ; Temperature ; temperature- and pH-responsive ; Wettability</subject><ispartof>Biomedical materials (Bristol), 2014-10, Vol.9 (5), p.055001-055001</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-eeec53579619d3e3d3adba56632a3b6647d907f73c2a40069bbc97031c0a8d403</citedby><cites>FETCH-LOGICAL-c385t-eeec53579619d3e3d3adba56632a3b6647d907f73c2a40069bbc97031c0a8d403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-6041/9/5/055001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25135109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Huihua</creatorcontrib><creatorcontrib>Li, Biyun</creatorcontrib><creatorcontrib>Liang, Kai</creatorcontrib><creatorcontrib>Lou, Xiangxin</creatorcontrib><creatorcontrib>Zhang, Yanzhong</creatorcontrib><title>Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have rarely been explored. In this study, chitosan-graft-poly(N-isopropylacrylamide) (CTS-g-PNIPAAm) copolymer was synthesized by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS) as grafting agents to graft carboxyl-terminated PNIPAAm (PNIPAAm-COOH) chains onto the CTS biomacromolecules, and then CTS-g-PNIPAAm with or without bovine serum albumin (BSA) was fabricated into nanofibers through electrospinning using poly(ethylene oxide) (PEO, 10 wt%) as a fiber-forming facilitating additive. The BSA laden CTS-g-PNIPAAm/PEO hydrogel nanofibers were tested to determine their drug release profiles by varying pH and temperature. Finally, cytotoxicity of the CTS-g-PNIPAAm/PEO hydrogel nanofibers was evaluated by assaying the L929 cell proliferation using the MTT method. It was found that the synthesized CTS-g-PNIPAAm possessed a temperature-induced phase transition and lower critical solution temperature (LCST) at 32° C in aqueous solutions. The rate of BSA release could be well modulated by altering the environmental pH and temperature of the hydrogel nanofibers. The CTS-g-PNIPAAm/PEO hydrogel nanofibers supported L929 cell growth, indicative of appropriate cytocompatibility. Our current work could pave the way towards developing multi-stimuli responsive nanofibrous smart materials for potential applications in the fields of drug delivery and tissue engineering.</description><subject>Acrylic Resins - chemistry</subject><subject>Acrylic Resins - toxicity</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - toxicity</subject><subject>Cattle</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Chitosan - analogs &amp; derivatives</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - toxicity</subject><subject>CTS-g-PNIPAAm</subject><subject>drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Electrochemical Techniques</subject><subject>electrospinning</subject><subject>Hydrogels</subject><subject>Hydrogen-Ion Concentration</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molecular Structure</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - toxicity</subject><subject>Nanofibers - ultrastructure</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - toxicity</subject><subject>Serum Albumin, Bovine - administration &amp; dosage</subject><subject>Serum Albumin, Bovine - pharmacokinetics</subject><subject>Temperature</subject><subject>temperature- and pH-responsive</subject><subject>Wettability</subject><issn>1748-6041</issn><issn>1748-605X</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVpyPc_KEXH5OB6tJJs67gsaRIIbUi20JuQrbHXwZZcyS7ZS357vOw2x55mGJ6Z4X0I-cLgG4OiSFkuiiQDwVKVyhSkBGCfyOlhLH9__ugFOyFnMb4ASCW5OiYnC8m4ZKBOydsTNlNnxtY11IapoQE7NBFpHXxPh7uEGmfpiP2AwYxTwCRgHLyL7V-kM1qNwcdhcnS1fk6a5PHH_eNy2aeD77ZXOG62HTqk_rW1eE03Wxt8gx11xvm6LTHEC3JUmy7i5aGek1_fb9aru-Th5-39avmQVLyQY4KIleQyVxlTliO33NjSyCzjC8PLLBO5VZDXOa8WRgBkqiwrlQNnFZjCCuDn5Gp_dwj-z4Rx1H0bK-w649BPUTMphRJswfMZFXu0mpPFgLUeQtubsNUM9M683mnVO61aaan35ue1r4cPU9mj_Vj6p3oGYA-0ftAvfgpuDvz_m-9SYo4r</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Yuan, Huihua</creator><creator>Li, Biyun</creator><creator>Liang, Kai</creator><creator>Lou, Xiangxin</creator><creator>Zhang, Yanzhong</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141001</creationdate><title>Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers</title><author>Yuan, Huihua ; Li, Biyun ; Liang, Kai ; Lou, Xiangxin ; Zhang, Yanzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-eeec53579619d3e3d3adba56632a3b6647d907f73c2a40069bbc97031c0a8d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Acrylic Resins - toxicity</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - toxicity</topic><topic>Cattle</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Chitosan - analogs &amp; derivatives</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - toxicity</topic><topic>CTS-g-PNIPAAm</topic><topic>drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Electrochemical Techniques</topic><topic>electrospinning</topic><topic>Hydrogels</topic><topic>Hydrogen-Ion Concentration</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molecular Structure</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - toxicity</topic><topic>Nanofibers - ultrastructure</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - toxicity</topic><topic>Serum Albumin, Bovine - administration &amp; dosage</topic><topic>Serum Albumin, Bovine - pharmacokinetics</topic><topic>Temperature</topic><topic>temperature- and pH-responsive</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Huihua</creatorcontrib><creatorcontrib>Li, Biyun</creatorcontrib><creatorcontrib>Liang, Kai</creatorcontrib><creatorcontrib>Lou, Xiangxin</creatorcontrib><creatorcontrib>Zhang, Yanzhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Huihua</au><au>Li, Biyun</au><au>Liang, Kai</au><au>Lou, Xiangxin</au><au>Zhang, Yanzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>055001</spage><epage>055001</epage><pages>055001-055001</pages><issn>1748-6041</issn><issn>1748-605X</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have rarely been explored. In this study, chitosan-graft-poly(N-isopropylacrylamide) (CTS-g-PNIPAAm) copolymer was synthesized by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS) as grafting agents to graft carboxyl-terminated PNIPAAm (PNIPAAm-COOH) chains onto the CTS biomacromolecules, and then CTS-g-PNIPAAm with or without bovine serum albumin (BSA) was fabricated into nanofibers through electrospinning using poly(ethylene oxide) (PEO, 10 wt%) as a fiber-forming facilitating additive. The BSA laden CTS-g-PNIPAAm/PEO hydrogel nanofibers were tested to determine their drug release profiles by varying pH and temperature. Finally, cytotoxicity of the CTS-g-PNIPAAm/PEO hydrogel nanofibers was evaluated by assaying the L929 cell proliferation using the MTT method. It was found that the synthesized CTS-g-PNIPAAm possessed a temperature-induced phase transition and lower critical solution temperature (LCST) at 32° C in aqueous solutions. The rate of BSA release could be well modulated by altering the environmental pH and temperature of the hydrogel nanofibers. The CTS-g-PNIPAAm/PEO hydrogel nanofibers supported L929 cell growth, indicative of appropriate cytocompatibility. Our current work could pave the way towards developing multi-stimuli responsive nanofibrous smart materials for potential applications in the fields of drug delivery and tissue engineering.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25135109</pmid><doi>10.1088/1748-6041/9/5/055001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-6041
ispartof Biomedical materials (Bristol), 2014-10, Vol.9 (5), p.055001-055001
issn 1748-6041
1748-605X
1748-605X
language eng
recordid cdi_proquest_miscellaneous_1554941237
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Acrylic Resins - chemistry
Acrylic Resins - toxicity
Animals
Biocompatible Materials - chemistry
Biocompatible Materials - toxicity
Cattle
Cell Line
Cell Proliferation - drug effects
Chitosan - analogs & derivatives
Chitosan - chemistry
Chitosan - toxicity
CTS-g-PNIPAAm
drug delivery
Drug Delivery Systems
Electrochemical Techniques
electrospinning
Hydrogels
Hydrogen-Ion Concentration
Materials Testing
Mice
Microscopy, Electron, Scanning
Molecular Structure
Nanofibers - chemistry
Nanofibers - toxicity
Nanofibers - ultrastructure
Polyethylene Glycols - chemistry
Polyethylene Glycols - toxicity
Serum Albumin, Bovine - administration & dosage
Serum Albumin, Bovine - pharmacokinetics
Temperature
temperature- and pH-responsive
Wettability
title Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20drug%20release%20from%20pH-%20and%20temperature-responsive%20electrospun%20CTS-g-PNIPAAm/poly(ethylene%20oxide)%20hydrogel%20nanofibers&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Yuan,%20Huihua&rft.date=2014-10-01&rft.volume=9&rft.issue=5&rft.spage=055001&rft.epage=055001&rft.pages=055001-055001&rft.issn=1748-6041&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-6041/9/5/055001&rft_dat=%3Cproquest_iop_j%3E1554941237%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554941237&rft_id=info:pmid/25135109&rfr_iscdi=true