TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells

Background & Aims CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) have a profound ability to control immune responses. We have previously shown that the liver is a major source of peripherally induced Tregs. Here, we investigate the liver cell types and molecular mechanisms responsible for hepatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hepatology 2014-09, Vol.61 (3), p.594-599
Hauptverfasser: Carambia, Antonella, Freund, Barbara, Schwinge, Dorothee, Heine, Markus, Laschtowitz, Alena, Huber, Samuel, Wraith, David C, Korn, Thomas, Schramm, Christoph, Lohse, Ansgar W, Heeren, Joerg, Herkel, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 3
container_start_page 594
container_title Journal of hepatology
container_volume 61
creator Carambia, Antonella
Freund, Barbara
Schwinge, Dorothee
Heine, Markus
Laschtowitz, Alena
Huber, Samuel
Wraith, David C
Korn, Thomas
Schramm, Christoph
Lohse, Ansgar W
Heeren, Joerg
Herkel, Johannes
description Background & Aims CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) have a profound ability to control immune responses. We have previously shown that the liver is a major source of peripherally induced Tregs. Here, we investigate the liver cell types and molecular mechanisms responsible for hepatic Treg induction. Methods To assess the Treg-inducing potential of liver resident antigen-presenting cell types, we studied the conversion of Foxp3− non-Tregs into Foxp3+ Tregs induced by liver dendritic cells (DCs), liver sinusoidal endothelial cells (LSECs), or Kupffer cells (KCs). The dependency of Treg induction on TGF-β was tested in Treg conversion assays using T cells with reduced TGF-β sensitivity. The suppressive potential of liver cell-induced Tregs was assessed by an in vitro suppression assay and in vivo , in the model of experimental autoimmune encephalomyelitis (EAE). Results All tested liver cell types were capable of inducing Foxp3+ Tregs; however, LSECs were most efficient in inducing Tregs. Treg-induction was antigen-specific and depended on TGF-β. LSECs featured membrane-bound LAP/TGF-β and the anchor molecule GARP, which is required for tethering LAP/TGF-β to the cell membrane. LSEC-induced Tregs suppressed proliferation and cytokine secretion of effector T cells in vitro . LSEC-induced Tregs were also functional suppressors in vivo , as neuroantigen-specific Tregs induced by LSECs were able to suppress EAE. Conclusions We demonstrate that LSECs are the major liver cell type responsible for TGF-β dependent hepatic Treg induction. The extraordinary capacity of LSECs to induce Tregs was associated with their unique ability to tether TGF-β to their membrane.
doi_str_mv 10.1016/j.jhep.2014.04.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554941122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168827814002906</els_id><sourcerecordid>1554941122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-2dd8b323fc962bf60c3d4dbe14fcf4b3294c408de919428126f168036f23bd0a3</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMo7rj6Ah4kR2HosfJnMt0gwjI6q7CwB2dPewjdScVN29Npk-7FeS0fxGcyzawePCwUSSDf91H1K0JeM1gxYOpdu2rvcFhxYHIFufjmCVkwBVCAkuwpWWRRWZR8U56RFym1ACCgks_JGZebqlQcFuR2f7krfv8qLA7YW-xH6ns7mdGHngZHtx_lMh98vaS78HMQS7qP-C3R5kg7f4-RJt9PKXhbdzT7w3iHnc9vg12XXpJnru4Svnq4z8nN7tN--7m4ur78sr24KoyQbCy4tWUjuHCmUrxxCoyw0jbIpDNO5p9KGgmlxYpVkpeMK5fnAqEcF42FWpyTt6fcIYYfE6ZRH3yaO6h7DFPSbL2WlWSM8yzlJ6mJIaWITg_RH-p41Az0DFW3eoaqZ6gacvFNNr15yJ-aA9p_lr8Us-D9SYB5ynuPUSfjsTdofUQzahv84_kf_rObzvfe1N13PGJqwxT7zE8znbgG_XVe67xVJgF4BUr8AerOm5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554941122</pqid></control><display><type>article</type><title>TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Carambia, Antonella ; Freund, Barbara ; Schwinge, Dorothee ; Heine, Markus ; Laschtowitz, Alena ; Huber, Samuel ; Wraith, David C ; Korn, Thomas ; Schramm, Christoph ; Lohse, Ansgar W ; Heeren, Joerg ; Herkel, Johannes</creator><creatorcontrib>Carambia, Antonella ; Freund, Barbara ; Schwinge, Dorothee ; Heine, Markus ; Laschtowitz, Alena ; Huber, Samuel ; Wraith, David C ; Korn, Thomas ; Schramm, Christoph ; Lohse, Ansgar W ; Heeren, Joerg ; Herkel, Johannes</creatorcontrib><description>Background &amp; Aims CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) have a profound ability to control immune responses. We have previously shown that the liver is a major source of peripherally induced Tregs. Here, we investigate the liver cell types and molecular mechanisms responsible for hepatic Treg induction. Methods To assess the Treg-inducing potential of liver resident antigen-presenting cell types, we studied the conversion of Foxp3− non-Tregs into Foxp3+ Tregs induced by liver dendritic cells (DCs), liver sinusoidal endothelial cells (LSECs), or Kupffer cells (KCs). The dependency of Treg induction on TGF-β was tested in Treg conversion assays using T cells with reduced TGF-β sensitivity. The suppressive potential of liver cell-induced Tregs was assessed by an in vitro suppression assay and in vivo , in the model of experimental autoimmune encephalomyelitis (EAE). Results All tested liver cell types were capable of inducing Foxp3+ Tregs; however, LSECs were most efficient in inducing Tregs. Treg-induction was antigen-specific and depended on TGF-β. LSECs featured membrane-bound LAP/TGF-β and the anchor molecule GARP, which is required for tethering LAP/TGF-β to the cell membrane. LSEC-induced Tregs suppressed proliferation and cytokine secretion of effector T cells in vitro . LSEC-induced Tregs were also functional suppressors in vivo , as neuroantigen-specific Tregs induced by LSECs were able to suppress EAE. Conclusions We demonstrate that LSECs are the major liver cell type responsible for TGF-β dependent hepatic Treg induction. The extraordinary capacity of LSECs to induce Tregs was associated with their unique ability to tether TGF-β to their membrane.</description><identifier>ISSN: 0168-8278</identifier><identifier>EISSN: 1600-0641</identifier><identifier>DOI: 10.1016/j.jhep.2014.04.027</identifier><identifier>PMID: 24798620</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Antigen presentation ; Autoimmunity ; Cell Communication - drug effects ; Cell Differentiation - drug effects ; Cells, Cultured ; Dendritic Cells - drug effects ; Dendritic Cells - pathology ; Endothelium - drug effects ; Endothelium - pathology ; Forkhead Transcription Factors - metabolism ; Gastroenterology and Hepatology ; Hepatic tolerance ; In Vitro Techniques ; Interleukin-2 Receptor alpha Subunit - metabolism ; Kupffer Cells - drug effects ; Kupffer Cells - pathology ; Liver - drug effects ; Liver - pathology ; Liver sinusoidal endothelial cells ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Mutant Strains ; Models, Animal ; Regulatory T cells ; T-Lymphocytes, Regulatory - drug effects ; T-Lymphocytes, Regulatory - metabolism ; T-Lymphocytes, Regulatory - pathology ; TGF-β ; Transforming Growth Factor beta - pharmacology</subject><ispartof>Journal of hepatology, 2014-09, Vol.61 (3), p.594-599</ispartof><rights>European Association for the Study of the Liver</rights><rights>2014 European Association for the Study of the Liver</rights><rights>Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-2dd8b323fc962bf60c3d4dbe14fcf4b3294c408de919428126f168036f23bd0a3</citedby><cites>FETCH-LOGICAL-c341t-2dd8b323fc962bf60c3d4dbe14fcf4b3294c408de919428126f168036f23bd0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhep.2014.04.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24798620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carambia, Antonella</creatorcontrib><creatorcontrib>Freund, Barbara</creatorcontrib><creatorcontrib>Schwinge, Dorothee</creatorcontrib><creatorcontrib>Heine, Markus</creatorcontrib><creatorcontrib>Laschtowitz, Alena</creatorcontrib><creatorcontrib>Huber, Samuel</creatorcontrib><creatorcontrib>Wraith, David C</creatorcontrib><creatorcontrib>Korn, Thomas</creatorcontrib><creatorcontrib>Schramm, Christoph</creatorcontrib><creatorcontrib>Lohse, Ansgar W</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><creatorcontrib>Herkel, Johannes</creatorcontrib><title>TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells</title><title>Journal of hepatology</title><addtitle>J Hepatol</addtitle><description>Background &amp; Aims CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) have a profound ability to control immune responses. We have previously shown that the liver is a major source of peripherally induced Tregs. Here, we investigate the liver cell types and molecular mechanisms responsible for hepatic Treg induction. Methods To assess the Treg-inducing potential of liver resident antigen-presenting cell types, we studied the conversion of Foxp3− non-Tregs into Foxp3+ Tregs induced by liver dendritic cells (DCs), liver sinusoidal endothelial cells (LSECs), or Kupffer cells (KCs). The dependency of Treg induction on TGF-β was tested in Treg conversion assays using T cells with reduced TGF-β sensitivity. The suppressive potential of liver cell-induced Tregs was assessed by an in vitro suppression assay and in vivo , in the model of experimental autoimmune encephalomyelitis (EAE). Results All tested liver cell types were capable of inducing Foxp3+ Tregs; however, LSECs were most efficient in inducing Tregs. Treg-induction was antigen-specific and depended on TGF-β. LSECs featured membrane-bound LAP/TGF-β and the anchor molecule GARP, which is required for tethering LAP/TGF-β to the cell membrane. LSEC-induced Tregs suppressed proliferation and cytokine secretion of effector T cells in vitro . LSEC-induced Tregs were also functional suppressors in vivo , as neuroantigen-specific Tregs induced by LSECs were able to suppress EAE. Conclusions We demonstrate that LSECs are the major liver cell type responsible for TGF-β dependent hepatic Treg induction. The extraordinary capacity of LSECs to induce Tregs was associated with their unique ability to tether TGF-β to their membrane.</description><subject>Animals</subject><subject>Antigen presentation</subject><subject>Autoimmunity</subject><subject>Cell Communication - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - pathology</subject><subject>Endothelium - drug effects</subject><subject>Endothelium - pathology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Gastroenterology and Hepatology</subject><subject>Hepatic tolerance</subject><subject>In Vitro Techniques</subject><subject>Interleukin-2 Receptor alpha Subunit - metabolism</subject><subject>Kupffer Cells - drug effects</subject><subject>Kupffer Cells - pathology</subject><subject>Liver - drug effects</subject><subject>Liver - pathology</subject><subject>Liver sinusoidal endothelial cells</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred Strains</subject><subject>Mice, Mutant Strains</subject><subject>Models, Animal</subject><subject>Regulatory T cells</subject><subject>T-Lymphocytes, Regulatory - drug effects</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>T-Lymphocytes, Regulatory - pathology</subject><subject>TGF-β</subject><subject>Transforming Growth Factor beta - pharmacology</subject><issn>0168-8278</issn><issn>1600-0641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc-KFDEQxoMo7rj6Ah4kR2HosfJnMt0gwjI6q7CwB2dPewjdScVN29Npk-7FeS0fxGcyzawePCwUSSDf91H1K0JeM1gxYOpdu2rvcFhxYHIFufjmCVkwBVCAkuwpWWRRWZR8U56RFym1ACCgks_JGZebqlQcFuR2f7krfv8qLA7YW-xH6ns7mdGHngZHtx_lMh98vaS78HMQS7qP-C3R5kg7f4-RJt9PKXhbdzT7w3iHnc9vg12XXpJnru4Svnq4z8nN7tN--7m4ur78sr24KoyQbCy4tWUjuHCmUrxxCoyw0jbIpDNO5p9KGgmlxYpVkpeMK5fnAqEcF42FWpyTt6fcIYYfE6ZRH3yaO6h7DFPSbL2WlWSM8yzlJ6mJIaWITg_RH-p41Az0DFW3eoaqZ6gacvFNNr15yJ-aA9p_lr8Us-D9SYB5ynuPUSfjsTdofUQzahv84_kf_rObzvfe1N13PGJqwxT7zE8znbgG_XVe67xVJgF4BUr8AerOm5o</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Carambia, Antonella</creator><creator>Freund, Barbara</creator><creator>Schwinge, Dorothee</creator><creator>Heine, Markus</creator><creator>Laschtowitz, Alena</creator><creator>Huber, Samuel</creator><creator>Wraith, David C</creator><creator>Korn, Thomas</creator><creator>Schramm, Christoph</creator><creator>Lohse, Ansgar W</creator><creator>Heeren, Joerg</creator><creator>Herkel, Johannes</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells</title><author>Carambia, Antonella ; Freund, Barbara ; Schwinge, Dorothee ; Heine, Markus ; Laschtowitz, Alena ; Huber, Samuel ; Wraith, David C ; Korn, Thomas ; Schramm, Christoph ; Lohse, Ansgar W ; Heeren, Joerg ; Herkel, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-2dd8b323fc962bf60c3d4dbe14fcf4b3294c408de919428126f168036f23bd0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antigen presentation</topic><topic>Autoimmunity</topic><topic>Cell Communication - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - pathology</topic><topic>Endothelium - drug effects</topic><topic>Endothelium - pathology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Gastroenterology and Hepatology</topic><topic>Hepatic tolerance</topic><topic>In Vitro Techniques</topic><topic>Interleukin-2 Receptor alpha Subunit - metabolism</topic><topic>Kupffer Cells - drug effects</topic><topic>Kupffer Cells - pathology</topic><topic>Liver - drug effects</topic><topic>Liver - pathology</topic><topic>Liver sinusoidal endothelial cells</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred Strains</topic><topic>Mice, Mutant Strains</topic><topic>Models, Animal</topic><topic>Regulatory T cells</topic><topic>T-Lymphocytes, Regulatory - drug effects</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>T-Lymphocytes, Regulatory - pathology</topic><topic>TGF-β</topic><topic>Transforming Growth Factor beta - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carambia, Antonella</creatorcontrib><creatorcontrib>Freund, Barbara</creatorcontrib><creatorcontrib>Schwinge, Dorothee</creatorcontrib><creatorcontrib>Heine, Markus</creatorcontrib><creatorcontrib>Laschtowitz, Alena</creatorcontrib><creatorcontrib>Huber, Samuel</creatorcontrib><creatorcontrib>Wraith, David C</creatorcontrib><creatorcontrib>Korn, Thomas</creatorcontrib><creatorcontrib>Schramm, Christoph</creatorcontrib><creatorcontrib>Lohse, Ansgar W</creatorcontrib><creatorcontrib>Heeren, Joerg</creatorcontrib><creatorcontrib>Herkel, Johannes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carambia, Antonella</au><au>Freund, Barbara</au><au>Schwinge, Dorothee</au><au>Heine, Markus</au><au>Laschtowitz, Alena</au><au>Huber, Samuel</au><au>Wraith, David C</au><au>Korn, Thomas</au><au>Schramm, Christoph</au><au>Lohse, Ansgar W</au><au>Heeren, Joerg</au><au>Herkel, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells</atitle><jtitle>Journal of hepatology</jtitle><addtitle>J Hepatol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>61</volume><issue>3</issue><spage>594</spage><epage>599</epage><pages>594-599</pages><issn>0168-8278</issn><eissn>1600-0641</eissn><abstract>Background &amp; Aims CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) have a profound ability to control immune responses. We have previously shown that the liver is a major source of peripherally induced Tregs. Here, we investigate the liver cell types and molecular mechanisms responsible for hepatic Treg induction. Methods To assess the Treg-inducing potential of liver resident antigen-presenting cell types, we studied the conversion of Foxp3− non-Tregs into Foxp3+ Tregs induced by liver dendritic cells (DCs), liver sinusoidal endothelial cells (LSECs), or Kupffer cells (KCs). The dependency of Treg induction on TGF-β was tested in Treg conversion assays using T cells with reduced TGF-β sensitivity. The suppressive potential of liver cell-induced Tregs was assessed by an in vitro suppression assay and in vivo , in the model of experimental autoimmune encephalomyelitis (EAE). Results All tested liver cell types were capable of inducing Foxp3+ Tregs; however, LSECs were most efficient in inducing Tregs. Treg-induction was antigen-specific and depended on TGF-β. LSECs featured membrane-bound LAP/TGF-β and the anchor molecule GARP, which is required for tethering LAP/TGF-β to the cell membrane. LSEC-induced Tregs suppressed proliferation and cytokine secretion of effector T cells in vitro . LSEC-induced Tregs were also functional suppressors in vivo , as neuroantigen-specific Tregs induced by LSECs were able to suppress EAE. Conclusions We demonstrate that LSECs are the major liver cell type responsible for TGF-β dependent hepatic Treg induction. The extraordinary capacity of LSECs to induce Tregs was associated with their unique ability to tether TGF-β to their membrane.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24798620</pmid><doi>10.1016/j.jhep.2014.04.027</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-8278
ispartof Journal of hepatology, 2014-09, Vol.61 (3), p.594-599
issn 0168-8278
1600-0641
language eng
recordid cdi_proquest_miscellaneous_1554941122
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Antigen presentation
Autoimmunity
Cell Communication - drug effects
Cell Differentiation - drug effects
Cells, Cultured
Dendritic Cells - drug effects
Dendritic Cells - pathology
Endothelium - drug effects
Endothelium - pathology
Forkhead Transcription Factors - metabolism
Gastroenterology and Hepatology
Hepatic tolerance
In Vitro Techniques
Interleukin-2 Receptor alpha Subunit - metabolism
Kupffer Cells - drug effects
Kupffer Cells - pathology
Liver - drug effects
Liver - pathology
Liver sinusoidal endothelial cells
Mice
Mice, Inbred C57BL
Mice, Inbred Strains
Mice, Mutant Strains
Models, Animal
Regulatory T cells
T-Lymphocytes, Regulatory - drug effects
T-Lymphocytes, Regulatory - metabolism
T-Lymphocytes, Regulatory - pathology
TGF-β
Transforming Growth Factor beta - pharmacology
title TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TGF-%CE%B2-dependent%20induction%20of%20CD4+%20CD25+%20Foxp3+%20Tregs%20by%20liver%20sinusoidal%20endothelial%20cells&rft.jtitle=Journal%20of%20hepatology&rft.au=Carambia,%20Antonella&rft.date=2014-09-01&rft.volume=61&rft.issue=3&rft.spage=594&rft.epage=599&rft.pages=594-599&rft.issn=0168-8278&rft.eissn=1600-0641&rft_id=info:doi/10.1016/j.jhep.2014.04.027&rft_dat=%3Cproquest_cross%3E1554941122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554941122&rft_id=info:pmid/24798620&rft_els_id=S0168827814002906&rfr_iscdi=true