In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons

Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2014-07, Vol.61, p.141-151
Hauptverfasser: Wang, Yi-Yun, Wu, Huei-Ing, Hsu, Wei-Lun, Chung, Hui-Wen, Yang, Pei-Hung, Chang, Yen-Chung, Chow, Wei-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue
container_start_page 141
container_title Molecular and cellular neuroscience
container_volume 61
creator Wang, Yi-Yun
Wu, Huei-Ing
Hsu, Wei-Lun
Chung, Hui-Wen
Yang, Pei-Hung
Chang, Yen-Chung
Chow, Wei-Yuan
description Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in their abilities to support axonal growth and branching, are designed and employed here to isolate large quantities of axonal materials. Cone-, shaft- and axon-residing transcripts with amounts higher than that of a somatodendritic transcript, Actg1 (γ-actin), are selected and classified. Since the chips are optically transparent, distribution of transcripts over axons can be studied by fluorescence in situ hybridization. Three transcripts, Cadm1 (cell adhesion molecule 1), Nefl (neurofilament light polypeptide), and Cfl1 (non-muscle cofilin) are confirmed to be preferentially localized to the growth cones, while Pfn2 (profilin2) is preferentially localized to the shafts of those axons growing on the chip that restricts axonal growth. The different growing conditions of axons on chips and on conventional coverslips do not affect the cone-preferred localization of Cadm1 and shaft-preferred localization of Pfn2, but affect the distributions of Nefl and Cfl1 over the axons at 14th day in vitro. Furthermore, the distributions of Cadm1 and Nefl over the axons growing on conventional coverslips undergo changes during in vitro development. Our results suggest a dynamic nature of the mechanisms regulating the distributions of transcripts in axonal substructures in a manner dependent upon both growth conditions and neuronal maturation.
doi_str_mv 10.1016/j.mcn.2014.06.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554472920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743114000724</els_id><sourcerecordid>1554472920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-10ba8d203c87a71f6c16773b64fd594acb7f437d4380d16791e90fd303a6b0523</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EomXLA3BBPnJJsGMn3qinqmqhUgUSomfLscesV4md2s5CH4W3xUtKe-M0tuf_v5HnR-gdJTUltPu4ryft64ZQXpOuJpS-QKeU9G3Vs0a8PJ45rwRn9AS9SWlPCGmbnr1GJw3vt6yl4hT9vvH44HIM-EcMP_MO6-CNyy74hJU32MABxjBP4DNW1oLO2LhSY3lwaiyXlKMbltURLP725QI7j9Wv4Ev7GQorL-2UzX-FehnzEsHgqDLeuXkOWk1z8XhYYoGdoVdWjQnePtYNuru--n75ubr9-unm8uK20qxluaJkUFvTEKa3QglqO007IdjQcWvanis9CMuZMJxtiSmtnkJPrGGEqW4o-2Ab9GHlzjHcL5CynFzSMI7KQ1iSpG3LuWj6MmKD6CrVMaQUwco5uknFB0mJPCYi97IkIo-JSNLJkkjxvH_EL8ME5snxL4IiOF8FUD55cBBl0g68BuNiWbc0wf0H_wc4Cp7N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554472920</pqid></control><display><type>article</type><title>In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Yi-Yun ; Wu, Huei-Ing ; Hsu, Wei-Lun ; Chung, Hui-Wen ; Yang, Pei-Hung ; Chang, Yen-Chung ; Chow, Wei-Yuan</creator><creatorcontrib>Wang, Yi-Yun ; Wu, Huei-Ing ; Hsu, Wei-Lun ; Chung, Hui-Wen ; Yang, Pei-Hung ; Chang, Yen-Chung ; Chow, Wei-Yuan</creatorcontrib><description>Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in their abilities to support axonal growth and branching, are designed and employed here to isolate large quantities of axonal materials. Cone-, shaft- and axon-residing transcripts with amounts higher than that of a somatodendritic transcript, Actg1 (γ-actin), are selected and classified. Since the chips are optically transparent, distribution of transcripts over axons can be studied by fluorescence in situ hybridization. Three transcripts, Cadm1 (cell adhesion molecule 1), Nefl (neurofilament light polypeptide), and Cfl1 (non-muscle cofilin) are confirmed to be preferentially localized to the growth cones, while Pfn2 (profilin2) is preferentially localized to the shafts of those axons growing on the chip that restricts axonal growth. The different growing conditions of axons on chips and on conventional coverslips do not affect the cone-preferred localization of Cadm1 and shaft-preferred localization of Pfn2, but affect the distributions of Nefl and Cfl1 over the axons at 14th day in vitro. Furthermore, the distributions of Cadm1 and Nefl over the axons growing on conventional coverslips undergo changes during in vitro development. Our results suggest a dynamic nature of the mechanisms regulating the distributions of transcripts in axonal substructures in a manner dependent upon both growth conditions and neuronal maturation.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2014.06.011</identifier><identifier>PMID: 24983517</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Age Factors ; Animals ; Axonal growth ; Axonal RNA ; Axonal shaft ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cells, Cultured ; Cofilin 1 - genetics ; Cofilin 1 - metabolism ; Embryo, Mammalian ; Female ; Gene Products, nef - genetics ; Gene Products, nef - metabolism ; Growth cone ; Growth Cones - metabolism ; Hippocampus - cytology ; In Situ Hybridization, Fluorescence ; Membrane Microdomains - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Neurons - cytology ; Pregnancy ; Profilins - genetics ; Profilins - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Ribosomal, 18S - metabolism</subject><ispartof>Molecular and cellular neuroscience, 2014-07, Vol.61, p.141-151</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-10ba8d203c87a71f6c16773b64fd594acb7f437d4380d16791e90fd303a6b0523</citedby><cites>FETCH-LOGICAL-c353t-10ba8d203c87a71f6c16773b64fd594acb7f437d4380d16791e90fd303a6b0523</cites><orcidid>0000-0002-3197-5017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2014.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24983517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yi-Yun</creatorcontrib><creatorcontrib>Wu, Huei-Ing</creatorcontrib><creatorcontrib>Hsu, Wei-Lun</creatorcontrib><creatorcontrib>Chung, Hui-Wen</creatorcontrib><creatorcontrib>Yang, Pei-Hung</creatorcontrib><creatorcontrib>Chang, Yen-Chung</creatorcontrib><creatorcontrib>Chow, Wei-Yuan</creatorcontrib><title>In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in their abilities to support axonal growth and branching, are designed and employed here to isolate large quantities of axonal materials. Cone-, shaft- and axon-residing transcripts with amounts higher than that of a somatodendritic transcript, Actg1 (γ-actin), are selected and classified. Since the chips are optically transparent, distribution of transcripts over axons can be studied by fluorescence in situ hybridization. Three transcripts, Cadm1 (cell adhesion molecule 1), Nefl (neurofilament light polypeptide), and Cfl1 (non-muscle cofilin) are confirmed to be preferentially localized to the growth cones, while Pfn2 (profilin2) is preferentially localized to the shafts of those axons growing on the chip that restricts axonal growth. The different growing conditions of axons on chips and on conventional coverslips do not affect the cone-preferred localization of Cadm1 and shaft-preferred localization of Pfn2, but affect the distributions of Nefl and Cfl1 over the axons at 14th day in vitro. Furthermore, the distributions of Cadm1 and Nefl over the axons growing on conventional coverslips undergo changes during in vitro development. Our results suggest a dynamic nature of the mechanisms regulating the distributions of transcripts in axonal substructures in a manner dependent upon both growth conditions and neuronal maturation.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Axonal growth</subject><subject>Axonal RNA</subject><subject>Axonal shaft</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cells, Cultured</subject><subject>Cofilin 1 - genetics</subject><subject>Cofilin 1 - metabolism</subject><subject>Embryo, Mammalian</subject><subject>Female</subject><subject>Gene Products, nef - genetics</subject><subject>Gene Products, nef - metabolism</subject><subject>Growth cone</subject><subject>Growth Cones - metabolism</subject><subject>Hippocampus - cytology</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Neurons - cytology</subject><subject>Pregnancy</subject><subject>Profilins - genetics</subject><subject>Profilins - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Ribosomal, 18S - metabolism</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EomXLA3BBPnJJsGMn3qinqmqhUgUSomfLscesV4md2s5CH4W3xUtKe-M0tuf_v5HnR-gdJTUltPu4ryft64ZQXpOuJpS-QKeU9G3Vs0a8PJ45rwRn9AS9SWlPCGmbnr1GJw3vt6yl4hT9vvH44HIM-EcMP_MO6-CNyy74hJU32MABxjBP4DNW1oLO2LhSY3lwaiyXlKMbltURLP725QI7j9Wv4Ev7GQorL-2UzX-FehnzEsHgqDLeuXkOWk1z8XhYYoGdoVdWjQnePtYNuru--n75ubr9-unm8uK20qxluaJkUFvTEKa3QglqO007IdjQcWvanis9CMuZMJxtiSmtnkJPrGGEqW4o-2Ab9GHlzjHcL5CynFzSMI7KQ1iSpG3LuWj6MmKD6CrVMaQUwco5uknFB0mJPCYi97IkIo-JSNLJkkjxvH_EL8ME5snxL4IiOF8FUD55cBBl0g68BuNiWbc0wf0H_wc4Cp7N</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Wang, Yi-Yun</creator><creator>Wu, Huei-Ing</creator><creator>Hsu, Wei-Lun</creator><creator>Chung, Hui-Wen</creator><creator>Yang, Pei-Hung</creator><creator>Chang, Yen-Chung</creator><creator>Chow, Wei-Yuan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3197-5017</orcidid></search><sort><creationdate>20140701</creationdate><title>In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons</title><author>Wang, Yi-Yun ; Wu, Huei-Ing ; Hsu, Wei-Lun ; Chung, Hui-Wen ; Yang, Pei-Hung ; Chang, Yen-Chung ; Chow, Wei-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-10ba8d203c87a71f6c16773b64fd594acb7f437d4380d16791e90fd303a6b0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Axonal growth</topic><topic>Axonal RNA</topic><topic>Axonal shaft</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cells, Cultured</topic><topic>Cofilin 1 - genetics</topic><topic>Cofilin 1 - metabolism</topic><topic>Embryo, Mammalian</topic><topic>Female</topic><topic>Gene Products, nef - genetics</topic><topic>Gene Products, nef - metabolism</topic><topic>Growth cone</topic><topic>Growth Cones - metabolism</topic><topic>Hippocampus - cytology</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Neurons - cytology</topic><topic>Pregnancy</topic><topic>Profilins - genetics</topic><topic>Profilins - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Ribosomal, 18S - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi-Yun</creatorcontrib><creatorcontrib>Wu, Huei-Ing</creatorcontrib><creatorcontrib>Hsu, Wei-Lun</creatorcontrib><creatorcontrib>Chung, Hui-Wen</creatorcontrib><creatorcontrib>Yang, Pei-Hung</creatorcontrib><creatorcontrib>Chang, Yen-Chung</creatorcontrib><creatorcontrib>Chow, Wei-Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi-Yun</au><au>Wu, Huei-Ing</au><au>Hsu, Wei-Lun</au><au>Chung, Hui-Wen</au><au>Yang, Pei-Hung</au><au>Chang, Yen-Chung</au><au>Chow, Wei-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>61</volume><spage>141</spage><epage>151</epage><pages>141-151</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in their abilities to support axonal growth and branching, are designed and employed here to isolate large quantities of axonal materials. Cone-, shaft- and axon-residing transcripts with amounts higher than that of a somatodendritic transcript, Actg1 (γ-actin), are selected and classified. Since the chips are optically transparent, distribution of transcripts over axons can be studied by fluorescence in situ hybridization. Three transcripts, Cadm1 (cell adhesion molecule 1), Nefl (neurofilament light polypeptide), and Cfl1 (non-muscle cofilin) are confirmed to be preferentially localized to the growth cones, while Pfn2 (profilin2) is preferentially localized to the shafts of those axons growing on the chip that restricts axonal growth. The different growing conditions of axons on chips and on conventional coverslips do not affect the cone-preferred localization of Cadm1 and shaft-preferred localization of Pfn2, but affect the distributions of Nefl and Cfl1 over the axons at 14th day in vitro. Furthermore, the distributions of Cadm1 and Nefl over the axons growing on conventional coverslips undergo changes during in vitro development. Our results suggest a dynamic nature of the mechanisms regulating the distributions of transcripts in axonal substructures in a manner dependent upon both growth conditions and neuronal maturation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24983517</pmid><doi>10.1016/j.mcn.2014.06.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3197-5017</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2014-07, Vol.61, p.141-151
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_1554472920
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Actins - genetics
Actins - metabolism
Age Factors
Animals
Axonal growth
Axonal RNA
Axonal shaft
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cells, Cultured
Cofilin 1 - genetics
Cofilin 1 - metabolism
Embryo, Mammalian
Female
Gene Products, nef - genetics
Gene Products, nef - metabolism
Growth cone
Growth Cones - metabolism
Hippocampus - cytology
In Situ Hybridization, Fluorescence
Membrane Microdomains - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Neurons - cytology
Pregnancy
Profilins - genetics
Profilins - metabolism
Rats
Rats, Sprague-Dawley
RNA, Ribosomal, 18S - metabolism
title In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20growth%20conditions%20and%20development%20affect%20differential%20distributions%20of%20RNA%20in%20axonal%20growth%20cones%20and%20shafts%20of%20cultured%20rat%20hippocampal%20neurons&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Wang,%20Yi-Yun&rft.date=2014-07-01&rft.volume=61&rft.spage=141&rft.epage=151&rft.pages=141-151&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2014.06.011&rft_dat=%3Cproquest_cross%3E1554472920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554472920&rft_id=info:pmid/24983517&rft_els_id=S1044743114000724&rfr_iscdi=true