Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction

•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2014-11, Vol.112, p.235-244
Hauptverfasser: Gnanaprakasam Thankam, Finosh, Muthu, Jayabalan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue
container_start_page 235
container_title Carbohydrate polymers
container_volume 112
creator Gnanaprakasam Thankam, Finosh
Muthu, Jayabalan
description •Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.
doi_str_mv 10.1016/j.carbpol.2014.05.083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554469373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486171400561X</els_id><sourcerecordid>1554469373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</originalsourceid><addsrcrecordid>eNqFkM2OFCEURonROO3oI2jYmLipEgqoKlZmMhl1kknc6Jrwc-mhQxUlVJv0bt5Bn3CeRDrd6lI2EDj3496D0GtKWkpo_37XWp3NkmLbEcpbIloysidoQ8dBNpRx_hRt6gNvxp4OF-hFKTtSV0_Jc3TRCdrJgZMN2l7FbZj1CtjoAg7fH0wODttUkw8T5HrhctpCLI8Pv25nH_cwW8DJ4yVlwFPKy32KaXvAacYWYnx8-DnVuBx0xGGuB23XkOaX6JnXscCr836Jvn28-Xr9ubn78un2-uqusUyKtfED6_reDLQzTg8CrBx7T-0IHpzwnZdGUmtkp63peA-iTsG4oZ5I7uXgOLtE7065S07f91BWNYVy7EvPkPZFUSE47yUbWEXFCbU5lZLBqyWHSeeDokQdHaudOjtWR8eKCFUd17o35y_2ZgL3t-qP1Aq8PQO6WB191rMN5R831iElGyv34cRVu_AjQFbFhqNeFzLYVbkU_tPKbyPIoR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554469373</pqid></control><display><type>article</type><title>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gnanaprakasam Thankam, Finosh ; Muthu, Jayabalan</creator><creatorcontrib>Gnanaprakasam Thankam, Finosh ; Muthu, Jayabalan</creatorcontrib><description>•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2014.05.083</identifier><identifier>PMID: 25129740</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acrylamides - chemistry ; Alginate hybrid copolymer ; Alginates - chemistry ; Animals ; Applied sciences ; Biocompatible Materials - chemical synthesis ; Biological and medical sciences ; Cell Proliferation ; Cell–material interaction ; Collagen - metabolism ; Cross-Linking Reagents - chemistry ; Exact sciences and technology ; Fibroblasts - cytology ; Fumarates - chemistry ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; Hydrogels - chemistry ; Medical sciences ; Mice ; Morphologically modified hydrogels ; Myocytes, Cardiac - cytology ; Natural polymers ; Organic polymers ; Physical properties ; Physicochemistry of polymers ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Polypropylenes - chemistry ; Properties and characterization ; Solution and gel properties ; Spectrophotometry, Infrared ; Starch and polysaccharides ; Surface Properties ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods</subject><ispartof>Carbohydrate polymers, 2014-11, Vol.112, p.235-244</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</citedby><cites>FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2014.05.083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28732938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25129740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnanaprakasam Thankam, Finosh</creatorcontrib><creatorcontrib>Muthu, Jayabalan</creatorcontrib><title>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.</description><subject>Acrylamides - chemistry</subject><subject>Alginate hybrid copolymer</subject><subject>Alginates - chemistry</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biological and medical sciences</subject><subject>Cell Proliferation</subject><subject>Cell–material interaction</subject><subject>Collagen - metabolism</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fibroblasts - cytology</subject><subject>Fumarates - chemistry</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hydrogels - chemistry</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Morphologically modified hydrogels</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Natural polymers</subject><subject>Organic polymers</subject><subject>Physical properties</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polypropylenes - chemistry</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><subject>Spectrophotometry, Infrared</subject><subject>Starch and polysaccharides</subject><subject>Surface Properties</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM2OFCEURonROO3oI2jYmLipEgqoKlZmMhl1kknc6Jrwc-mhQxUlVJv0bt5Bn3CeRDrd6lI2EDj3496D0GtKWkpo_37XWp3NkmLbEcpbIloysidoQ8dBNpRx_hRt6gNvxp4OF-hFKTtSV0_Jc3TRCdrJgZMN2l7FbZj1CtjoAg7fH0wODttUkw8T5HrhctpCLI8Pv25nH_cwW8DJ4yVlwFPKy32KaXvAacYWYnx8-DnVuBx0xGGuB23XkOaX6JnXscCr836Jvn28-Xr9ubn78un2-uqusUyKtfED6_reDLQzTg8CrBx7T-0IHpzwnZdGUmtkp63peA-iTsG4oZ5I7uXgOLtE7065S07f91BWNYVy7EvPkPZFUSE47yUbWEXFCbU5lZLBqyWHSeeDokQdHaudOjtWR8eKCFUd17o35y_2ZgL3t-qP1Aq8PQO6WB191rMN5R831iElGyv34cRVu_AjQFbFhqNeFzLYVbkU_tPKbyPIoR4</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Gnanaprakasam Thankam, Finosh</creator><creator>Muthu, Jayabalan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141104</creationdate><title>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</title><author>Gnanaprakasam Thankam, Finosh ; Muthu, Jayabalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acrylamides - chemistry</topic><topic>Alginate hybrid copolymer</topic><topic>Alginates - chemistry</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biological and medical sciences</topic><topic>Cell Proliferation</topic><topic>Cell–material interaction</topic><topic>Collagen - metabolism</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fibroblasts - cytology</topic><topic>Fumarates - chemistry</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hydrogels - chemistry</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Morphologically modified hydrogels</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Natural polymers</topic><topic>Organic polymers</topic><topic>Physical properties</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polypropylenes - chemistry</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><topic>Spectrophotometry, Infrared</topic><topic>Starch and polysaccharides</topic><topic>Surface Properties</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanaprakasam Thankam, Finosh</creatorcontrib><creatorcontrib>Muthu, Jayabalan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanaprakasam Thankam, Finosh</au><au>Muthu, Jayabalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>112</volume><spage>235</spage><epage>244</epage><pages>235-244</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>25129740</pmid><doi>10.1016/j.carbpol.2014.05.083</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2014-11, Vol.112, p.235-244
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1554469373
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Acrylamides - chemistry
Alginate hybrid copolymer
Alginates - chemistry
Animals
Applied sciences
Biocompatible Materials - chemical synthesis
Biological and medical sciences
Cell Proliferation
Cell–material interaction
Collagen - metabolism
Cross-Linking Reagents - chemistry
Exact sciences and technology
Fibroblasts - cytology
Fumarates - chemistry
Glucuronic Acid - chemistry
Hexuronic Acids - chemistry
Hydrogels - chemistry
Medical sciences
Mice
Morphologically modified hydrogels
Myocytes, Cardiac - cytology
Natural polymers
Organic polymers
Physical properties
Physicochemistry of polymers
Polyethylene Glycols - chemistry
Polymers - chemistry
Polypropylenes - chemistry
Properties and characterization
Solution and gel properties
Spectrophotometry, Infrared
Starch and polysaccharides
Surface Properties
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tissue Engineering - methods
title Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alginate%20based%20hybrid%20copolymer%20hydrogels%E2%80%94Influence%20of%20pore%20morphology%20on%20cell%E2%80%93material%20interaction&rft.jtitle=Carbohydrate%20polymers&rft.au=Gnanaprakasam%20Thankam,%20Finosh&rft.date=2014-11-04&rft.volume=112&rft.spage=235&rft.epage=244&rft.pages=235-244&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2014.05.083&rft_dat=%3Cproquest_cross%3E1554469373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554469373&rft_id=info:pmid/25129740&rft_els_id=S014486171400561X&rfr_iscdi=true