Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction
•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2014-11, Vol.112, p.235-244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244 |
---|---|
container_issue | |
container_start_page | 235 |
container_title | Carbohydrate polymers |
container_volume | 112 |
creator | Gnanaprakasam Thankam, Finosh Muthu, Jayabalan |
description | •Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications.
Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering. |
doi_str_mv | 10.1016/j.carbpol.2014.05.083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554469373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486171400561X</els_id><sourcerecordid>1554469373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</originalsourceid><addsrcrecordid>eNqFkM2OFCEURonROO3oI2jYmLipEgqoKlZmMhl1kknc6Jrwc-mhQxUlVJv0bt5Bn3CeRDrd6lI2EDj3496D0GtKWkpo_37XWp3NkmLbEcpbIloysidoQ8dBNpRx_hRt6gNvxp4OF-hFKTtSV0_Jc3TRCdrJgZMN2l7FbZj1CtjoAg7fH0wODttUkw8T5HrhctpCLI8Pv25nH_cwW8DJ4yVlwFPKy32KaXvAacYWYnx8-DnVuBx0xGGuB23XkOaX6JnXscCr836Jvn28-Xr9ubn78un2-uqusUyKtfED6_reDLQzTg8CrBx7T-0IHpzwnZdGUmtkp63peA-iTsG4oZ5I7uXgOLtE7065S07f91BWNYVy7EvPkPZFUSE47yUbWEXFCbU5lZLBqyWHSeeDokQdHaudOjtWR8eKCFUd17o35y_2ZgL3t-qP1Aq8PQO6WB191rMN5R831iElGyv34cRVu_AjQFbFhqNeFzLYVbkU_tPKbyPIoR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554469373</pqid></control><display><type>article</type><title>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gnanaprakasam Thankam, Finosh ; Muthu, Jayabalan</creator><creatorcontrib>Gnanaprakasam Thankam, Finosh ; Muthu, Jayabalan</creatorcontrib><description>•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications.
Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2014.05.083</identifier><identifier>PMID: 25129740</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acrylamides - chemistry ; Alginate hybrid copolymer ; Alginates - chemistry ; Animals ; Applied sciences ; Biocompatible Materials - chemical synthesis ; Biological and medical sciences ; Cell Proliferation ; Cell–material interaction ; Collagen - metabolism ; Cross-Linking Reagents - chemistry ; Exact sciences and technology ; Fibroblasts - cytology ; Fumarates - chemistry ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; Hydrogels - chemistry ; Medical sciences ; Mice ; Morphologically modified hydrogels ; Myocytes, Cardiac - cytology ; Natural polymers ; Organic polymers ; Physical properties ; Physicochemistry of polymers ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Polypropylenes - chemistry ; Properties and characterization ; Solution and gel properties ; Spectrophotometry, Infrared ; Starch and polysaccharides ; Surface Properties ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods</subject><ispartof>Carbohydrate polymers, 2014-11, Vol.112, p.235-244</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</citedby><cites>FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2014.05.083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28732938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25129740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnanaprakasam Thankam, Finosh</creatorcontrib><creatorcontrib>Muthu, Jayabalan</creatorcontrib><title>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications.
Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.</description><subject>Acrylamides - chemistry</subject><subject>Alginate hybrid copolymer</subject><subject>Alginates - chemistry</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biological and medical sciences</subject><subject>Cell Proliferation</subject><subject>Cell–material interaction</subject><subject>Collagen - metabolism</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fibroblasts - cytology</subject><subject>Fumarates - chemistry</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hydrogels - chemistry</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Morphologically modified hydrogels</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Natural polymers</subject><subject>Organic polymers</subject><subject>Physical properties</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polypropylenes - chemistry</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><subject>Spectrophotometry, Infrared</subject><subject>Starch and polysaccharides</subject><subject>Surface Properties</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM2OFCEURonROO3oI2jYmLipEgqoKlZmMhl1kknc6Jrwc-mhQxUlVJv0bt5Bn3CeRDrd6lI2EDj3496D0GtKWkpo_37XWp3NkmLbEcpbIloysidoQ8dBNpRx_hRt6gNvxp4OF-hFKTtSV0_Jc3TRCdrJgZMN2l7FbZj1CtjoAg7fH0wODttUkw8T5HrhctpCLI8Pv25nH_cwW8DJ4yVlwFPKy32KaXvAacYWYnx8-DnVuBx0xGGuB23XkOaX6JnXscCr836Jvn28-Xr9ubn78un2-uqusUyKtfED6_reDLQzTg8CrBx7T-0IHpzwnZdGUmtkp63peA-iTsG4oZ5I7uXgOLtE7065S07f91BWNYVy7EvPkPZFUSE47yUbWEXFCbU5lZLBqyWHSeeDokQdHaudOjtWR8eKCFUd17o35y_2ZgL3t-qP1Aq8PQO6WB191rMN5R831iElGyv34cRVu_AjQFbFhqNeFzLYVbkU_tPKbyPIoR4</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Gnanaprakasam Thankam, Finosh</creator><creator>Muthu, Jayabalan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141104</creationdate><title>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</title><author>Gnanaprakasam Thankam, Finosh ; Muthu, Jayabalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f73266b712bda75ec986f1c8efed5f2f9b91cb92acb246e529734b1f094f97d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acrylamides - chemistry</topic><topic>Alginate hybrid copolymer</topic><topic>Alginates - chemistry</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biological and medical sciences</topic><topic>Cell Proliferation</topic><topic>Cell–material interaction</topic><topic>Collagen - metabolism</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fibroblasts - cytology</topic><topic>Fumarates - chemistry</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hydrogels - chemistry</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Morphologically modified hydrogels</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Natural polymers</topic><topic>Organic polymers</topic><topic>Physical properties</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polypropylenes - chemistry</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><topic>Spectrophotometry, Infrared</topic><topic>Starch and polysaccharides</topic><topic>Surface Properties</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanaprakasam Thankam, Finosh</creatorcontrib><creatorcontrib>Muthu, Jayabalan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanaprakasam Thankam, Finosh</au><au>Muthu, Jayabalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>112</volume><spage>235</spage><epage>244</epage><pages>235-244</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•Alginate based hybrid copolymer hydrogels with unidirectional pore morphology.•Hydrogel comprises alginate–poly(propylene fumarate) copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid.•Hybrid hydrogel favours fibroblast infiltration and collagen synthesis for longer duration and promotes cardiomyoblast growth on to their interstices.•Favourable synergistic biological performance for cardiac tissue engineering applications.
Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N′-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate–acrylic acid (ALGP–PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>25129740</pmid><doi>10.1016/j.carbpol.2014.05.083</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2014-11, Vol.112, p.235-244 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_1554469373 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Acrylamides - chemistry Alginate hybrid copolymer Alginates - chemistry Animals Applied sciences Biocompatible Materials - chemical synthesis Biological and medical sciences Cell Proliferation Cell–material interaction Collagen - metabolism Cross-Linking Reagents - chemistry Exact sciences and technology Fibroblasts - cytology Fumarates - chemistry Glucuronic Acid - chemistry Hexuronic Acids - chemistry Hydrogels - chemistry Medical sciences Mice Morphologically modified hydrogels Myocytes, Cardiac - cytology Natural polymers Organic polymers Physical properties Physicochemistry of polymers Polyethylene Glycols - chemistry Polymers - chemistry Polypropylenes - chemistry Properties and characterization Solution and gel properties Spectrophotometry, Infrared Starch and polysaccharides Surface Properties Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tissue Engineering - methods |
title | Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alginate%20based%20hybrid%20copolymer%20hydrogels%E2%80%94Influence%20of%20pore%20morphology%20on%20cell%E2%80%93material%20interaction&rft.jtitle=Carbohydrate%20polymers&rft.au=Gnanaprakasam%20Thankam,%20Finosh&rft.date=2014-11-04&rft.volume=112&rft.spage=235&rft.epage=244&rft.pages=235-244&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2014.05.083&rft_dat=%3Cproquest_cross%3E1554469373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554469373&rft_id=info:pmid/25129740&rft_els_id=S014486171400561X&rfr_iscdi=true |