The potential importance of bacterial processes in regulating rate of lake acidification [Canadian Shield lakes; Canada]

Rates of microbial reduction of O2, Fe3+, Mn4+, NO3-, and SO42-, and total generation of CO2 and CH4 were measured in the hypolimnia of three Canadian Shield lakes. Methanogenesis accounted for 72-80% of anoxic carbon generation, while sulfate reduction contributed 16-20%. The remainder of anoxic ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnol. Oceanogr.; (United States) 1982-01, Vol.27 (5), p.868-882
Hauptverfasser: Kelly, C. A., John W. M. Rudd, Cook, R. B., Schindler, D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 5
container_start_page 868
container_title Limnol. Oceanogr.; (United States)
container_volume 27
creator Kelly, C. A.
John W. M. Rudd
Cook, R. B.
Schindler, D. W.
description Rates of microbial reduction of O2, Fe3+, Mn4+, NO3-, and SO42-, and total generation of CO2 and CH4 were measured in the hypolimnia of three Canadian Shield lakes. Methanogenesis accounted for 72-80% of anoxic carbon generation, while sulfate reduction contributed 16-20%. The remainder of anoxic carbon generation (2-8%) originated from all of the other processes combined (nitrate, iron, and manganese reduction). In lakes affected by acid deposition,inputs of sulfate and nitrate will increase, and it is expected that reducing power normally going to methane production will be diverted to nitrate and sulfate reduction. The last two reduction reactions can result in alkalinity production, whereas methane production does not. A model was developed to predict the significance of hypolimnetic alkalinity production which could result from these reactions in lakes with known hypolimnetic reducing power (methane production). The model showed that the hypolimnia of two ELA lakes which have been made eutrophic artificially could potentially produce enough persistent alkalinity to neutralize "typical" acid deposition, while a lake that was not eutrophic could not. Besides trophic state, other factors important in determining a lake's capability for hypolimnetic alkalinity production were watershed area: surface area ratio, the watershed retentions of H+, SO42-, NO3-, and NH4+, and the degree of precipitation of FeS in the sediment.
doi_str_mv 10.4319/lo.1982.27.5.0868
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_15541754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2835971</jstor_id><sourcerecordid>2835971</sourcerecordid><originalsourceid>FETCH-LOGICAL-f288t-86114f9fb96d02d432177a58144fa5ffbc89e02dd2c7574793a2cd9f05a446b83</originalsourceid><addsrcrecordid>eNqFkU1LJDEQhsOisOPHDxBEwh721m0-uxM8LcOuCoIH9STS1KSTmWhPMptkQP_9xpm9e6qinoeCqhehM0pawam-nGJLtWIt61vZEtWpb2hGNdeNlJocoBkhTDS89t_RUc6vhBAtpZyh98eVxZtYbCgeJuzXm5gKBGNxdHgBptj0Od-kaGzONmMfcLLL7QTFhyVOUHbmBG8Wg_Gjd95UFAN-nkOA0UPADytvp3Hn5Cu8G8PLCTp0MGV7-r8eo6c_vx_nN83d_fXt_Ndd45hSpVEdpcJpt9DdSNgoOKN9D1JRIRxI5xZGaVvByEwve9FrDsyM2hEJQnQLxY_Rj_3emIsfsvHFmpWJIVhThq6-iPBP6edeqnf-3dpchrXPxk4TBBu3eaBSCtpL8bXIVddpoqt4vhdfc4lp2CS_hvQxMFUz6GnFF3vsIA6wTD4PTw81QE6U6gQR_B_1BYzr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13866909</pqid></control><display><type>article</type><title>The potential importance of bacterial processes in regulating rate of lake acidification [Canadian Shield lakes; Canada]</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kelly, C. A. ; John W. M. Rudd ; Cook, R. B. ; Schindler, D. W.</creator><creatorcontrib>Kelly, C. A. ; John W. M. Rudd ; Cook, R. B. ; Schindler, D. W.</creatorcontrib><description>Rates of microbial reduction of O2, Fe3+, Mn4+, NO3-, and SO42-, and total generation of CO2 and CH4 were measured in the hypolimnia of three Canadian Shield lakes. Methanogenesis accounted for 72-80% of anoxic carbon generation, while sulfate reduction contributed 16-20%. The remainder of anoxic carbon generation (2-8%) originated from all of the other processes combined (nitrate, iron, and manganese reduction). In lakes affected by acid deposition,inputs of sulfate and nitrate will increase, and it is expected that reducing power normally going to methane production will be diverted to nitrate and sulfate reduction. The last two reduction reactions can result in alkalinity production, whereas methane production does not. A model was developed to predict the significance of hypolimnetic alkalinity production which could result from these reactions in lakes with known hypolimnetic reducing power (methane production). The model showed that the hypolimnia of two ELA lakes which have been made eutrophic artificially could potentially produce enough persistent alkalinity to neutralize "typical" acid deposition, while a lake that was not eutrophic could not. Besides trophic state, other factors important in determining a lake's capability for hypolimnetic alkalinity production were watershed area: surface area ratio, the watershed retentions of H+, SO42-, NO3-, and NH4+, and the degree of precipitation of FeS in the sediment.</description><identifier>ISSN: 0024-3590</identifier><identifier>EISSN: 1939-5590</identifier><identifier>DOI: 10.4319/lo.1982.27.5.0868</identifier><language>eng</language><publisher>United States: American Society of Limnology and Oceanography</publisher><subject>520200 - Environment, Aquatic- Chemicals Monitoring &amp; Transport- (-1989) ; 550700 - Microbiology ; Acidification ; Alkalinity ; ALKANES ; BACTERIA ; BASIC BIOLOGICAL SCIENCES ; BIODEGRADATION ; BIOLOGICAL MODELS ; CANADA ; CARBON COMPOUNDS ; CARBON DIOXIDE ; CARBON OXIDES ; CHALCOGENIDES ; CHEMICAL REACTIONS ; DECOMPOSITION ; ELEMENTS ; ENVIRONMENTAL SCIENCES ; Freshwater ; HYDROCARBONS ; IRON COMPOUNDS ; LAKES ; LIMNOLOGY ; MANGANESE ; METALS ; METHANE ; Methane production ; MICROORGANISMS ; NITRATES ; NITROGEN COMPOUNDS ; NONMETALS ; NORTH AMERICA ; ORGANIC COMPOUNDS ; OXIDES ; OXYGEN ; OXYGEN COMPOUNDS ; PH VALUE ; REDUCTION ; Sediments ; SULFATES ; SULFUR COMPOUNDS ; SURFACE WATERS ; TRANSITION ELEMENT COMPOUNDS ; TRANSITION ELEMENTS ; Watersheds</subject><ispartof>Limnol. Oceanogr.; (United States), 1982-01, Vol.27 (5), p.868-882</ispartof><rights>Copyright 1982 American Society of Limnology and Oceanography, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2835971$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2835971$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6193038$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, C. A.</creatorcontrib><creatorcontrib>John W. M. Rudd</creatorcontrib><creatorcontrib>Cook, R. B.</creatorcontrib><creatorcontrib>Schindler, D. W.</creatorcontrib><title>The potential importance of bacterial processes in regulating rate of lake acidification [Canadian Shield lakes; Canada]</title><title>Limnol. Oceanogr.; (United States)</title><description>Rates of microbial reduction of O2, Fe3+, Mn4+, NO3-, and SO42-, and total generation of CO2 and CH4 were measured in the hypolimnia of three Canadian Shield lakes. Methanogenesis accounted for 72-80% of anoxic carbon generation, while sulfate reduction contributed 16-20%. The remainder of anoxic carbon generation (2-8%) originated from all of the other processes combined (nitrate, iron, and manganese reduction). In lakes affected by acid deposition,inputs of sulfate and nitrate will increase, and it is expected that reducing power normally going to methane production will be diverted to nitrate and sulfate reduction. The last two reduction reactions can result in alkalinity production, whereas methane production does not. A model was developed to predict the significance of hypolimnetic alkalinity production which could result from these reactions in lakes with known hypolimnetic reducing power (methane production). The model showed that the hypolimnia of two ELA lakes which have been made eutrophic artificially could potentially produce enough persistent alkalinity to neutralize "typical" acid deposition, while a lake that was not eutrophic could not. Besides trophic state, other factors important in determining a lake's capability for hypolimnetic alkalinity production were watershed area: surface area ratio, the watershed retentions of H+, SO42-, NO3-, and NH4+, and the degree of precipitation of FeS in the sediment.</description><subject>520200 - Environment, Aquatic- Chemicals Monitoring &amp; Transport- (-1989)</subject><subject>550700 - Microbiology</subject><subject>Acidification</subject><subject>Alkalinity</subject><subject>ALKANES</subject><subject>BACTERIA</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIODEGRADATION</subject><subject>BIOLOGICAL MODELS</subject><subject>CANADA</subject><subject>CARBON COMPOUNDS</subject><subject>CARBON DIOXIDE</subject><subject>CARBON OXIDES</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>DECOMPOSITION</subject><subject>ELEMENTS</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Freshwater</subject><subject>HYDROCARBONS</subject><subject>IRON COMPOUNDS</subject><subject>LAKES</subject><subject>LIMNOLOGY</subject><subject>MANGANESE</subject><subject>METALS</subject><subject>METHANE</subject><subject>Methane production</subject><subject>MICROORGANISMS</subject><subject>NITRATES</subject><subject>NITROGEN COMPOUNDS</subject><subject>NONMETALS</subject><subject>NORTH AMERICA</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXIDES</subject><subject>OXYGEN</subject><subject>OXYGEN COMPOUNDS</subject><subject>PH VALUE</subject><subject>REDUCTION</subject><subject>Sediments</subject><subject>SULFATES</subject><subject>SULFUR COMPOUNDS</subject><subject>SURFACE WATERS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSITION ELEMENTS</subject><subject>Watersheds</subject><issn>0024-3590</issn><issn>1939-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LJDEQhsOisOPHDxBEwh721m0-uxM8LcOuCoIH9STS1KSTmWhPMptkQP_9xpm9e6qinoeCqhehM0pawam-nGJLtWIt61vZEtWpb2hGNdeNlJocoBkhTDS89t_RUc6vhBAtpZyh98eVxZtYbCgeJuzXm5gKBGNxdHgBptj0Od-kaGzONmMfcLLL7QTFhyVOUHbmBG8Wg_Gjd95UFAN-nkOA0UPADytvp3Hn5Cu8G8PLCTp0MGV7-r8eo6c_vx_nN83d_fXt_Ndd45hSpVEdpcJpt9DdSNgoOKN9D1JRIRxI5xZGaVvByEwve9FrDsyM2hEJQnQLxY_Rj_3emIsfsvHFmpWJIVhThq6-iPBP6edeqnf-3dpchrXPxk4TBBu3eaBSCtpL8bXIVddpoqt4vhdfc4lp2CS_hvQxMFUz6GnFF3vsIA6wTD4PTw81QE6U6gQR_B_1BYzr</recordid><startdate>19820101</startdate><enddate>19820101</enddate><creator>Kelly, C. A.</creator><creator>John W. M. Rudd</creator><creator>Cook, R. B.</creator><creator>Schindler, D. W.</creator><general>American Society of Limnology and Oceanography</general><scope>FBQ</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>19820101</creationdate><title>The potential importance of bacterial processes in regulating rate of lake acidification [Canadian Shield lakes; Canada]</title><author>Kelly, C. A. ; John W. M. Rudd ; Cook, R. B. ; Schindler, D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f288t-86114f9fb96d02d432177a58144fa5ffbc89e02dd2c7574793a2cd9f05a446b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>520200 - Environment, Aquatic- Chemicals Monitoring &amp; Transport- (-1989)</topic><topic>550700 - Microbiology</topic><topic>Acidification</topic><topic>Alkalinity</topic><topic>ALKANES</topic><topic>BACTERIA</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIODEGRADATION</topic><topic>BIOLOGICAL MODELS</topic><topic>CANADA</topic><topic>CARBON COMPOUNDS</topic><topic>CARBON DIOXIDE</topic><topic>CARBON OXIDES</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>DECOMPOSITION</topic><topic>ELEMENTS</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Freshwater</topic><topic>HYDROCARBONS</topic><topic>IRON COMPOUNDS</topic><topic>LAKES</topic><topic>LIMNOLOGY</topic><topic>MANGANESE</topic><topic>METALS</topic><topic>METHANE</topic><topic>Methane production</topic><topic>MICROORGANISMS</topic><topic>NITRATES</topic><topic>NITROGEN COMPOUNDS</topic><topic>NONMETALS</topic><topic>NORTH AMERICA</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXIDES</topic><topic>OXYGEN</topic><topic>OXYGEN COMPOUNDS</topic><topic>PH VALUE</topic><topic>REDUCTION</topic><topic>Sediments</topic><topic>SULFATES</topic><topic>SULFUR COMPOUNDS</topic><topic>SURFACE WATERS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSITION ELEMENTS</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, C. A.</creatorcontrib><creatorcontrib>John W. M. Rudd</creatorcontrib><creatorcontrib>Cook, R. B.</creatorcontrib><creatorcontrib>Schindler, D. W.</creatorcontrib><collection>AGRIS</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Limnol. Oceanogr.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, C. A.</au><au>John W. M. Rudd</au><au>Cook, R. B.</au><au>Schindler, D. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The potential importance of bacterial processes in regulating rate of lake acidification [Canadian Shield lakes; Canada]</atitle><jtitle>Limnol. Oceanogr.; (United States)</jtitle><date>1982-01-01</date><risdate>1982</risdate><volume>27</volume><issue>5</issue><spage>868</spage><epage>882</epage><pages>868-882</pages><issn>0024-3590</issn><eissn>1939-5590</eissn><abstract>Rates of microbial reduction of O2, Fe3+, Mn4+, NO3-, and SO42-, and total generation of CO2 and CH4 were measured in the hypolimnia of three Canadian Shield lakes. Methanogenesis accounted for 72-80% of anoxic carbon generation, while sulfate reduction contributed 16-20%. The remainder of anoxic carbon generation (2-8%) originated from all of the other processes combined (nitrate, iron, and manganese reduction). In lakes affected by acid deposition,inputs of sulfate and nitrate will increase, and it is expected that reducing power normally going to methane production will be diverted to nitrate and sulfate reduction. The last two reduction reactions can result in alkalinity production, whereas methane production does not. A model was developed to predict the significance of hypolimnetic alkalinity production which could result from these reactions in lakes with known hypolimnetic reducing power (methane production). The model showed that the hypolimnia of two ELA lakes which have been made eutrophic artificially could potentially produce enough persistent alkalinity to neutralize "typical" acid deposition, while a lake that was not eutrophic could not. Besides trophic state, other factors important in determining a lake's capability for hypolimnetic alkalinity production were watershed area: surface area ratio, the watershed retentions of H+, SO42-, NO3-, and NH4+, and the degree of precipitation of FeS in the sediment.</abstract><cop>United States</cop><pub>American Society of Limnology and Oceanography</pub><doi>10.4319/lo.1982.27.5.0868</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3590
ispartof Limnol. Oceanogr.; (United States), 1982-01, Vol.27 (5), p.868-882
issn 0024-3590
1939-5590
language eng
recordid cdi_proquest_miscellaneous_15541754
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 520200 - Environment, Aquatic- Chemicals Monitoring & Transport- (-1989)
550700 - Microbiology
Acidification
Alkalinity
ALKANES
BACTERIA
BASIC BIOLOGICAL SCIENCES
BIODEGRADATION
BIOLOGICAL MODELS
CANADA
CARBON COMPOUNDS
CARBON DIOXIDE
CARBON OXIDES
CHALCOGENIDES
CHEMICAL REACTIONS
DECOMPOSITION
ELEMENTS
ENVIRONMENTAL SCIENCES
Freshwater
HYDROCARBONS
IRON COMPOUNDS
LAKES
LIMNOLOGY
MANGANESE
METALS
METHANE
Methane production
MICROORGANISMS
NITRATES
NITROGEN COMPOUNDS
NONMETALS
NORTH AMERICA
ORGANIC COMPOUNDS
OXIDES
OXYGEN
OXYGEN COMPOUNDS
PH VALUE
REDUCTION
Sediments
SULFATES
SULFUR COMPOUNDS
SURFACE WATERS
TRANSITION ELEMENT COMPOUNDS
TRANSITION ELEMENTS
Watersheds
title The potential importance of bacterial processes in regulating rate of lake acidification [Canadian Shield lakes; Canada]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20potential%20importance%20of%20bacterial%20processes%20in%20regulating%20rate%20of%20lake%20acidification%20%5BCanadian%20Shield%20lakes;%20Canada%5D&rft.jtitle=Limnol.%20Oceanogr.;%20(United%20States)&rft.au=Kelly,%20C.%20A.&rft.date=1982-01-01&rft.volume=27&rft.issue=5&rft.spage=868&rft.epage=882&rft.pages=868-882&rft.issn=0024-3590&rft.eissn=1939-5590&rft_id=info:doi/10.4319/lo.1982.27.5.0868&rft_dat=%3Cjstor_osti_%3E2835971%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13866909&rft_id=info:pmid/&rft_jstor_id=2835971&rfr_iscdi=true