Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study

We present a step-by-step theoretical protocol based on the first-principles methods to reveal the insight into the origin of the high photocatalytic activity achieved by the mixed-phase TiO2, consisting of anatase and rutile. The interfacial geometries, density of states, charge densities, optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-08, Vol.6 (15), p.12885-12892
Hauptverfasser: Ju, Ming-Gang, Sun, Guangxu, Wang, Jiajun, Meng, Qiangqiang, Liang, WanZhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12892
container_issue 15
container_start_page 12885
container_title ACS applied materials & interfaces
container_volume 6
creator Ju, Ming-Gang
Sun, Guangxu
Wang, Jiajun
Meng, Qiangqiang
Liang, WanZhen
description We present a step-by-step theoretical protocol based on the first-principles methods to reveal the insight into the origin of the high photocatalytic activity achieved by the mixed-phase TiO2, consisting of anatase and rutile. The interfacial geometries, density of states, charge densities, optical absorption spectrum, electrostatic potential, and band offsets have been calculated. The most stable mixed-phase structures have been identified, the interfacial tensile strain-dependent electronic structures have been observed, and the energy level diagram of band alignment has been given. We find that the geometrical reconstruction around the interfacial area has a negligible influence on the light absorption of the heterojunction and the interfacial sites seem not to dominantly contribute to the band-edge states. For the most stable heterojunction, the calculated valence-band maximum and conduction-band minimum of rutile, respectively, lie 0.52 and 0.22 eV above those of anatase, which agrees well with the experimental measurements and other theoretical predications. The good match of band energies to reaction requirements, large driving force for the charge immigration across the interface, and the difference of electrostatic potentials around the interface successfully explain the high photocatalytic activity achieved by the mixed-phase TiO2.
doi_str_mv 10.1021/am502830m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1553317072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553317072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a171t-d7b04eae3de4953625841b6c45655d17c00e638732128f4cb27c5dfab2f212fe3</originalsourceid><addsrcrecordid>eNo90MtKw0AUBuBBFFurC19AZiO4ic41F3elWCtUGrCuw2Ry0kzJzZkJ2Lc3Uu3qHA4fP4cfoVtKHilh9Ek1krCYk-YMTWkiRBAzyc5PuxATdOXcnpCQMyIv0YSJJBQ8Sqao3FizMy3uSrwyuwqnVec7rbyqD95onNquB-sNODwiXwF-N99QBGmlHOCt2bBnPMdLY50PUmtabfp6tNsKOgtjgKrxhx-KwzW6KFXt4OZvztDn8mW7WAXrzevbYr4OFI2oD4ooJwIU8AJEInnIZCxoHmohQykLGmlCIORxxBllcSl0ziIti1LlrBwvJfAZejjm9rb7GsD5rDFOQ12rFrrBZVRKzmlEIjbSuz865A0UWW9No-wh--9mBPdHoLTL9t1g2_HzjJLst_Ps1Dn_AQWxcEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553317072</pqid></control><display><type>article</type><title>Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study</title><source>ACS Publications</source><creator>Ju, Ming-Gang ; Sun, Guangxu ; Wang, Jiajun ; Meng, Qiangqiang ; Liang, WanZhen</creator><creatorcontrib>Ju, Ming-Gang ; Sun, Guangxu ; Wang, Jiajun ; Meng, Qiangqiang ; Liang, WanZhen</creatorcontrib><description>We present a step-by-step theoretical protocol based on the first-principles methods to reveal the insight into the origin of the high photocatalytic activity achieved by the mixed-phase TiO2, consisting of anatase and rutile. The interfacial geometries, density of states, charge densities, optical absorption spectrum, electrostatic potential, and band offsets have been calculated. The most stable mixed-phase structures have been identified, the interfacial tensile strain-dependent electronic structures have been observed, and the energy level diagram of band alignment has been given. We find that the geometrical reconstruction around the interfacial area has a negligible influence on the light absorption of the heterojunction and the interfacial sites seem not to dominantly contribute to the band-edge states. For the most stable heterojunction, the calculated valence-band maximum and conduction-band minimum of rutile, respectively, lie 0.52 and 0.22 eV above those of anatase, which agrees well with the experimental measurements and other theoretical predications. The good match of band energies to reaction requirements, large driving force for the charge immigration across the interface, and the difference of electrostatic potentials around the interface successfully explain the high photocatalytic activity achieved by the mixed-phase TiO2.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am502830m</identifier><identifier>PMID: 24964379</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2014-08, Vol.6 (15), p.12885-12892</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am502830m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am502830m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24964379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Ming-Gang</creatorcontrib><creatorcontrib>Sun, Guangxu</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Liang, WanZhen</creatorcontrib><title>Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We present a step-by-step theoretical protocol based on the first-principles methods to reveal the insight into the origin of the high photocatalytic activity achieved by the mixed-phase TiO2, consisting of anatase and rutile. The interfacial geometries, density of states, charge densities, optical absorption spectrum, electrostatic potential, and band offsets have been calculated. The most stable mixed-phase structures have been identified, the interfacial tensile strain-dependent electronic structures have been observed, and the energy level diagram of band alignment has been given. We find that the geometrical reconstruction around the interfacial area has a negligible influence on the light absorption of the heterojunction and the interfacial sites seem not to dominantly contribute to the band-edge states. For the most stable heterojunction, the calculated valence-band maximum and conduction-band minimum of rutile, respectively, lie 0.52 and 0.22 eV above those of anatase, which agrees well with the experimental measurements and other theoretical predications. The good match of band energies to reaction requirements, large driving force for the charge immigration across the interface, and the difference of electrostatic potentials around the interface successfully explain the high photocatalytic activity achieved by the mixed-phase TiO2.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90MtKw0AUBuBBFFurC19AZiO4ic41F3elWCtUGrCuw2Ry0kzJzZkJ2Lc3Uu3qHA4fP4cfoVtKHilh9Ek1krCYk-YMTWkiRBAzyc5PuxATdOXcnpCQMyIv0YSJJBQ8Sqao3FizMy3uSrwyuwqnVec7rbyqD95onNquB-sNODwiXwF-N99QBGmlHOCt2bBnPMdLY50PUmtabfp6tNsKOgtjgKrxhx-KwzW6KFXt4OZvztDn8mW7WAXrzevbYr4OFI2oD4ooJwIU8AJEInnIZCxoHmohQykLGmlCIORxxBllcSl0ziIti1LlrBwvJfAZejjm9rb7GsD5rDFOQ12rFrrBZVRKzmlEIjbSuz865A0UWW9No-wh--9mBPdHoLTL9t1g2_HzjJLst_Ps1Dn_AQWxcEo</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Ju, Ming-Gang</creator><creator>Sun, Guangxu</creator><creator>Wang, Jiajun</creator><creator>Meng, Qiangqiang</creator><creator>Liang, WanZhen</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140813</creationdate><title>Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study</title><author>Ju, Ming-Gang ; Sun, Guangxu ; Wang, Jiajun ; Meng, Qiangqiang ; Liang, WanZhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a171t-d7b04eae3de4953625841b6c45655d17c00e638732128f4cb27c5dfab2f212fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Ming-Gang</creatorcontrib><creatorcontrib>Sun, Guangxu</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Liang, WanZhen</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Ming-Gang</au><au>Sun, Guangxu</au><au>Wang, Jiajun</au><au>Meng, Qiangqiang</au><au>Liang, WanZhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>6</volume><issue>15</issue><spage>12885</spage><epage>12892</epage><pages>12885-12892</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We present a step-by-step theoretical protocol based on the first-principles methods to reveal the insight into the origin of the high photocatalytic activity achieved by the mixed-phase TiO2, consisting of anatase and rutile. The interfacial geometries, density of states, charge densities, optical absorption spectrum, electrostatic potential, and band offsets have been calculated. The most stable mixed-phase structures have been identified, the interfacial tensile strain-dependent electronic structures have been observed, and the energy level diagram of band alignment has been given. We find that the geometrical reconstruction around the interfacial area has a negligible influence on the light absorption of the heterojunction and the interfacial sites seem not to dominantly contribute to the band-edge states. For the most stable heterojunction, the calculated valence-band maximum and conduction-band minimum of rutile, respectively, lie 0.52 and 0.22 eV above those of anatase, which agrees well with the experimental measurements and other theoretical predications. The good match of band energies to reaction requirements, large driving force for the charge immigration across the interface, and the difference of electrostatic potentials around the interface successfully explain the high photocatalytic activity achieved by the mixed-phase TiO2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24964379</pmid><doi>10.1021/am502830m</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2014-08, Vol.6 (15), p.12885-12892
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1553317072
source ACS Publications
title Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20High%20Photocatalytic%20Properties%20in%20the%20Mixed-Phase%20TiO2:%20A%20First-Principles%20Theoretical%20Study&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ju,%20Ming-Gang&rft.date=2014-08-13&rft.volume=6&rft.issue=15&rft.spage=12885&rft.epage=12892&rft.pages=12885-12892&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am502830m&rft_dat=%3Cproquest_pubme%3E1553317072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553317072&rft_id=info:pmid/24964379&rfr_iscdi=true