Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids
. We have measured microrheological and microstructural properties of a superparamagnetic ferrofluid made of Mn 0.75 Zn 0.25 Fe 2 O 4 (MZF) nanoparticles, using passive microrheology in a home-built inverted microscope. Thermal motion of a probe microsphere was measured for different values of an ap...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2014-08, Vol.37 (8), p.25-25, Article 70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 8 |
container_start_page | 25 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 37 |
creator | Yendeti, Balaji Thirupathi, G. Vudaygiri, Ashok Singh, R. |
description | .
We have measured microrheological and microstructural properties of a superparamagnetic ferrofluid made of Mn
0.75
Zn
0.25
Fe
2
O
4
(MZF) nanoparticles, using passive microrheology in a home-built inverted microscope. Thermal motion of a probe microsphere was measured for different values of an applied external magnetic field and analysed. The analysis shows anisotropy in magneto-viscous effect. Additional microrheological properties, such as storage modulus and loss modulus and their transition are also seen. We have also obtained microstructural properties such as elongational flow coefficient
, relaxation time constant
, coefficient of dissipative magnetization
, etc., using the analysis given in Oliver Muller
et al.
, J. Phys.: Condens. Matter
18
, S2623, (2006) and Stefan Mahle
et al.
, Phys. Rev. E
77
, 016305 (2008) over our measured viscosity data. Our values for the above parameters are in agreement with earlier theoretical calculations and macro-rheological experimental measurements. These theoretical calculations consider an ideal situation of zero-shear limit, which is best approximated only in the passive microrheology technique described here and a first time measurement of all these parameters with passive microrheology.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2014-14070-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1553316873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553316873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b10026c76f277578fd1051a94440fcd7445fd3710562023da1d324e62f8b34163</originalsourceid><addsrcrecordid>eNp9kMtOxSAQhonReH8BF6YbEzdVBmhpl8Z4S0zcaOKOcGA4ctJTKrQL317ORd25Av75ZoCPkDOgVwCCXuOwwGvPKIgyHyUt2x1yCKxlZdNW77u_ewEH5CilBaUZpXyfHLAKQFaUHhJ977GzpcUBe4v9WOjepzDGMHhTLL2JIX5g6MLcG93lot2EaYyTGaeYsyGzGEePqQiusL6bRiwcxhhcN3mbTsie013C0-16TN7u715vH8vnl4en25vn0nApx3IGlLLayNoxKSvZOAu0At0KIagzVgpROctlDmtGGbcaLGcCa-aaGRdQ82NyuZmbH_Q5YRrV0ieDXad7DFNSUFWcQ91InlG2QVc_SRGdGqJf6vilgKqVWrVSq9Zq1VqtanPT-Xb-NFui_W35cZmBiy2gU5blou6NT39c0wAwseL4hku51M8xqkWYYp_d_Hf9N5_qlE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553316873</pqid></control><display><type>article</type><title>Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids</title><source>Springer Nature - Complete Springer Journals</source><creator>Yendeti, Balaji ; Thirupathi, G. ; Vudaygiri, Ashok ; Singh, R.</creator><creatorcontrib>Yendeti, Balaji ; Thirupathi, G. ; Vudaygiri, Ashok ; Singh, R.</creatorcontrib><description>.
We have measured microrheological and microstructural properties of a superparamagnetic ferrofluid made of Mn
0.75
Zn
0.25
Fe
2
O
4
(MZF) nanoparticles, using passive microrheology in a home-built inverted microscope. Thermal motion of a probe microsphere was measured for different values of an applied external magnetic field and analysed. The analysis shows anisotropy in magneto-viscous effect. Additional microrheological properties, such as storage modulus and loss modulus and their transition are also seen. We have also obtained microstructural properties such as elongational flow coefficient
, relaxation time constant
, coefficient of dissipative magnetization
, etc., using the analysis given in Oliver Muller
et al.
, J. Phys.: Condens. Matter
18
, S2623, (2006) and Stefan Mahle
et al.
, Phys. Rev. E
77
, 016305 (2008) over our measured viscosity data. Our values for the above parameters are in agreement with earlier theoretical calculations and macro-rheological experimental measurements. These theoretical calculations consider an ideal situation of zero-shear limit, which is best approximated only in the passive microrheology technique described here and a first time measurement of all these parameters with passive microrheology.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2014-14070-9</identifier><identifier>PMID: 25117500</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemistry ; Colloidal state and disperse state ; Complex Fluids and Microfluidics ; Complex Systems ; Exact sciences and technology ; General and physical chemistry ; Nanotechnology ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2014-08, Vol.37 (8), p.25-25, Article 70</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b10026c76f277578fd1051a94440fcd7445fd3710562023da1d324e62f8b34163</citedby><cites>FETCH-LOGICAL-c377t-b10026c76f277578fd1051a94440fcd7445fd3710562023da1d324e62f8b34163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2014-14070-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2014-14070-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28811240$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25117500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yendeti, Balaji</creatorcontrib><creatorcontrib>Thirupathi, G.</creatorcontrib><creatorcontrib>Vudaygiri, Ashok</creatorcontrib><creatorcontrib>Singh, R.</creatorcontrib><title>Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
We have measured microrheological and microstructural properties of a superparamagnetic ferrofluid made of Mn
0.75
Zn
0.25
Fe
2
O
4
(MZF) nanoparticles, using passive microrheology in a home-built inverted microscope. Thermal motion of a probe microsphere was measured for different values of an applied external magnetic field and analysed. The analysis shows anisotropy in magneto-viscous effect. Additional microrheological properties, such as storage modulus and loss modulus and their transition are also seen. We have also obtained microstructural properties such as elongational flow coefficient
, relaxation time constant
, coefficient of dissipative magnetization
, etc., using the analysis given in Oliver Muller
et al.
, J. Phys.: Condens. Matter
18
, S2623, (2006) and Stefan Mahle
et al.
, Phys. Rev. E
77
, 016305 (2008) over our measured viscosity data. Our values for the above parameters are in agreement with earlier theoretical calculations and macro-rheological experimental measurements. These theoretical calculations consider an ideal situation of zero-shear limit, which is best approximated only in the passive microrheology technique described here and a first time measurement of all these parameters with passive microrheology.
Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Nanotechnology</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxSAQhonReH8BF6YbEzdVBmhpl8Z4S0zcaOKOcGA4ctJTKrQL317ORd25Av75ZoCPkDOgVwCCXuOwwGvPKIgyHyUt2x1yCKxlZdNW77u_ewEH5CilBaUZpXyfHLAKQFaUHhJ977GzpcUBe4v9WOjepzDGMHhTLL2JIX5g6MLcG93lot2EaYyTGaeYsyGzGEePqQiusL6bRiwcxhhcN3mbTsie013C0-16TN7u715vH8vnl4en25vn0nApx3IGlLLayNoxKSvZOAu0At0KIagzVgpROctlDmtGGbcaLGcCa-aaGRdQ82NyuZmbH_Q5YRrV0ieDXad7DFNSUFWcQ91InlG2QVc_SRGdGqJf6vilgKqVWrVSq9Zq1VqtanPT-Xb-NFui_W35cZmBiy2gU5blou6NT39c0wAwseL4hku51M8xqkWYYp_d_Hf9N5_qlE4</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Yendeti, Balaji</creator><creator>Thirupathi, G.</creator><creator>Vudaygiri, Ashok</creator><creator>Singh, R.</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140801</creationdate><title>Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids</title><author>Yendeti, Balaji ; Thirupathi, G. ; Vudaygiri, Ashok ; Singh, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b10026c76f277578fd1051a94440fcd7445fd3710562023da1d324e62f8b34163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Nanotechnology</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yendeti, Balaji</creatorcontrib><creatorcontrib>Thirupathi, G.</creatorcontrib><creatorcontrib>Vudaygiri, Ashok</creatorcontrib><creatorcontrib>Singh, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yendeti, Balaji</au><au>Thirupathi, G.</au><au>Vudaygiri, Ashok</au><au>Singh, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>37</volume><issue>8</issue><spage>25</spage><epage>25</epage><pages>25-25</pages><artnum>70</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
We have measured microrheological and microstructural properties of a superparamagnetic ferrofluid made of Mn
0.75
Zn
0.25
Fe
2
O
4
(MZF) nanoparticles, using passive microrheology in a home-built inverted microscope. Thermal motion of a probe microsphere was measured for different values of an applied external magnetic field and analysed. The analysis shows anisotropy in magneto-viscous effect. Additional microrheological properties, such as storage modulus and loss modulus and their transition are also seen. We have also obtained microstructural properties such as elongational flow coefficient
, relaxation time constant
, coefficient of dissipative magnetization
, etc., using the analysis given in Oliver Muller
et al.
, J. Phys.: Condens. Matter
18
, S2623, (2006) and Stefan Mahle
et al.
, Phys. Rev. E
77
, 016305 (2008) over our measured viscosity data. Our values for the above parameters are in agreement with earlier theoretical calculations and macro-rheological experimental measurements. These theoretical calculations consider an ideal situation of zero-shear limit, which is best approximated only in the passive microrheology technique described here and a first time measurement of all these parameters with passive microrheology.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25117500</pmid><doi>10.1140/epje/i2014-14070-9</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2014-08, Vol.37 (8), p.25-25, Article 70 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_1553316873 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological and Medical Physics Biophysics Chemistry Colloidal state and disperse state Complex Fluids and Microfluidics Complex Systems Exact sciences and technology General and physical chemistry Nanotechnology Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Surfaces and Interfaces Thin Films |
title | Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-dependent%20anisotropic%20microrheological%20and%20microstructural%20properties%20of%20dilute%20ferrofluids&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Yendeti,%20Balaji&rft.date=2014-08-01&rft.volume=37&rft.issue=8&rft.spage=25&rft.epage=25&rft.pages=25-25&rft.artnum=70&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2014-14070-9&rft_dat=%3Cproquest_cross%3E1553316873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553316873&rft_id=info:pmid/25117500&rfr_iscdi=true |