Genetic comparisons yield insight into the evolution of enamel thickness during human evolution
Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that...
Gespeichert in:
Veröffentlicht in: | Journal of human evolution 2014-08, Vol.73, p.75-87 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | |
container_start_page | 75 |
container_title | Journal of human evolution |
container_volume | 73 |
creator | Horvath, Julie E. Ramachandran, Gowri L. Fedrigo, Olivier Nielsen, William J. Babbitt, Courtney C. St. Clair, Elizabeth M. Pfefferle, Lisa W. Jernvall, Jukka Wray, Gregory A. Wall, Christine E. |
description | Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that code for the enamel matrix proteins and the associated protease. The evolution of thick enamel in humans may have included changes in the regulation of these genes during tooth development. The cis-regulatory region in the 5′ flank (upstream non-coding region) of MMP20, which codes for enamelysin, the predominant protease active during enamel secretion, has previously been shown to be under strong positive selection in the lineages leading to both humans and chimpanzees. Here we examine evidence for positive selection in the 5′ flank and 3′ flank of AMELX, AMBN, ENAM, and MMP20. We contrast the human sequence changes with other hominoids (chimpanzees, gorillas, orangutans, gibbons) and rhesus macaques (outgroup), a sample comprising a range of enamel thickness. We find no evidence for positive selection in the protein-coding regions of any of these genes. In contrast, we find strong evidence for positive selection in the 5′ flank region of MMP20 and ENAM along the lineage leading to humans, and in both the 5′ flank and 3′ flank regions of MMP20 along the lineage leading to chimpanzees. We also identify putative transcription factor binding sites overlapping some of the species-specific nucleotide sites and we refine which sections of the up- and downstream putative regulatory regions are most likely to harbor important changes. These non-coding changes and their potential for differential regulation by transcription factors known to regulate tooth development may offer insight into the mechanisms that allow for rapid evolutionary changes in enamel thickness across closely-related species, and contribute to our understanding of the enamel phenotype in hominoids. |
doi_str_mv | 10.1016/j.jhevol.2014.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1553104923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047248414000888</els_id><sourcerecordid>1553104923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-67242ff7126b0a6075a571e840aba2dbee9abda62393fb6179eecc51448879873</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qqCy0b1BVvlTqJWHsOHZyQUKIAhISF3q2HGfCepvYi50g8fZ4tQvcOI00-v75Rx8hPxmUDJg825SbNT6HseTARAmsBKi_kBWDti4aCfIrWQEIVXDRiGNyktIGAFpR8W_kOO8YKGhXRF-jx9lZasO0NdGl4BN9cTj21PnkHtdznnOg8xrprm2ZXfA0DBS9mXDMe2f_e0yJ9kt0_pGul8n4D_Q7ORrMmPDHYZ6Sf3-vHi5virv769vLi7vCCsnnQiou-DAoxmUHRoKqTa0YNgJMZ3jfIbam643kVVsNnWSqRbS2ZkI0jWobVZ2SP_u72xieFkyznlyyOI7GY1iSZnVdMRAtrzIq9qiNIaWIg95GN5n4ohnonVq90Xu1eqdWA9NZbY79OjQs3YT9e-jNZQZ-HwCTrBmHaLx16YNrVD7Ddv3new6zj2eHUSfr0FvsXUQ76z64zz95BcELmj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553104923</pqid></control><display><type>article</type><title>Genetic comparisons yield insight into the evolution of enamel thickness during human evolution</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Horvath, Julie E. ; Ramachandran, Gowri L. ; Fedrigo, Olivier ; Nielsen, William J. ; Babbitt, Courtney C. ; St. Clair, Elizabeth M. ; Pfefferle, Lisa W. ; Jernvall, Jukka ; Wray, Gregory A. ; Wall, Christine E.</creator><creatorcontrib>Horvath, Julie E. ; Ramachandran, Gowri L. ; Fedrigo, Olivier ; Nielsen, William J. ; Babbitt, Courtney C. ; St. Clair, Elizabeth M. ; Pfefferle, Lisa W. ; Jernvall, Jukka ; Wray, Gregory A. ; Wall, Christine E.</creatorcontrib><description>Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that code for the enamel matrix proteins and the associated protease. The evolution of thick enamel in humans may have included changes in the regulation of these genes during tooth development. The cis-regulatory region in the 5′ flank (upstream non-coding region) of MMP20, which codes for enamelysin, the predominant protease active during enamel secretion, has previously been shown to be under strong positive selection in the lineages leading to both humans and chimpanzees. Here we examine evidence for positive selection in the 5′ flank and 3′ flank of AMELX, AMBN, ENAM, and MMP20. We contrast the human sequence changes with other hominoids (chimpanzees, gorillas, orangutans, gibbons) and rhesus macaques (outgroup), a sample comprising a range of enamel thickness. We find no evidence for positive selection in the protein-coding regions of any of these genes. In contrast, we find strong evidence for positive selection in the 5′ flank region of MMP20 and ENAM along the lineage leading to humans, and in both the 5′ flank and 3′ flank regions of MMP20 along the lineage leading to chimpanzees. We also identify putative transcription factor binding sites overlapping some of the species-specific nucleotide sites and we refine which sections of the up- and downstream putative regulatory regions are most likely to harbor important changes. These non-coding changes and their potential for differential regulation by transcription factors known to regulate tooth development may offer insight into the mechanisms that allow for rapid evolutionary changes in enamel thickness across closely-related species, and contribute to our understanding of the enamel phenotype in hominoids.</description><identifier>ISSN: 0047-2484</identifier><identifier>EISSN: 1095-8606</identifier><identifier>DOI: 10.1016/j.jhevol.2014.01.005</identifier><identifier>PMID: 24810709</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>AMBN ; AMELX ; Animals ; Anthropological methods ; Base Sequence ; Dental Enamel - anatomy & histology ; Dental Enamel Proteins - genetics ; Dental Enamel Proteins - metabolism ; ENAM ; Extracellular Matrix Proteins - genetics ; Extracellular Matrix Proteins - metabolism ; Hominidae - anatomy & histology ; Hominidae - genetics ; Hominidae - metabolism ; Human paleontology ; Humans ; Hylobatidae - anatomy & histology ; Hylobatidae - genetics ; Hylobatidae - metabolism ; Macaca mulatta - anatomy & histology ; Macaca mulatta - genetics ; Macaca mulatta - metabolism ; Male ; Matrix Metalloproteinase 20 - genetics ; Matrix Metalloproteinase 20 - metabolism ; Methodology and general studies ; MMP20 ; Phylogeny ; Prehistory and protohistory ; Primate comparative genomics ; Selection, Genetic ; Sequence Alignment</subject><ispartof>Journal of human evolution, 2014-08, Vol.73, p.75-87</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-67242ff7126b0a6075a571e840aba2dbee9abda62393fb6179eecc51448879873</citedby><cites>FETCH-LOGICAL-c462t-67242ff7126b0a6075a571e840aba2dbee9abda62393fb6179eecc51448879873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047248414000888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28700513$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24810709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horvath, Julie E.</creatorcontrib><creatorcontrib>Ramachandran, Gowri L.</creatorcontrib><creatorcontrib>Fedrigo, Olivier</creatorcontrib><creatorcontrib>Nielsen, William J.</creatorcontrib><creatorcontrib>Babbitt, Courtney C.</creatorcontrib><creatorcontrib>St. Clair, Elizabeth M.</creatorcontrib><creatorcontrib>Pfefferle, Lisa W.</creatorcontrib><creatorcontrib>Jernvall, Jukka</creatorcontrib><creatorcontrib>Wray, Gregory A.</creatorcontrib><creatorcontrib>Wall, Christine E.</creatorcontrib><title>Genetic comparisons yield insight into the evolution of enamel thickness during human evolution</title><title>Journal of human evolution</title><addtitle>J Hum Evol</addtitle><description>Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that code for the enamel matrix proteins and the associated protease. The evolution of thick enamel in humans may have included changes in the regulation of these genes during tooth development. The cis-regulatory region in the 5′ flank (upstream non-coding region) of MMP20, which codes for enamelysin, the predominant protease active during enamel secretion, has previously been shown to be under strong positive selection in the lineages leading to both humans and chimpanzees. Here we examine evidence for positive selection in the 5′ flank and 3′ flank of AMELX, AMBN, ENAM, and MMP20. We contrast the human sequence changes with other hominoids (chimpanzees, gorillas, orangutans, gibbons) and rhesus macaques (outgroup), a sample comprising a range of enamel thickness. We find no evidence for positive selection in the protein-coding regions of any of these genes. In contrast, we find strong evidence for positive selection in the 5′ flank region of MMP20 and ENAM along the lineage leading to humans, and in both the 5′ flank and 3′ flank regions of MMP20 along the lineage leading to chimpanzees. We also identify putative transcription factor binding sites overlapping some of the species-specific nucleotide sites and we refine which sections of the up- and downstream putative regulatory regions are most likely to harbor important changes. These non-coding changes and their potential for differential regulation by transcription factors known to regulate tooth development may offer insight into the mechanisms that allow for rapid evolutionary changes in enamel thickness across closely-related species, and contribute to our understanding of the enamel phenotype in hominoids.</description><subject>AMBN</subject><subject>AMELX</subject><subject>Animals</subject><subject>Anthropological methods</subject><subject>Base Sequence</subject><subject>Dental Enamel - anatomy & histology</subject><subject>Dental Enamel Proteins - genetics</subject><subject>Dental Enamel Proteins - metabolism</subject><subject>ENAM</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Hominidae - anatomy & histology</subject><subject>Hominidae - genetics</subject><subject>Hominidae - metabolism</subject><subject>Human paleontology</subject><subject>Humans</subject><subject>Hylobatidae - anatomy & histology</subject><subject>Hylobatidae - genetics</subject><subject>Hylobatidae - metabolism</subject><subject>Macaca mulatta - anatomy & histology</subject><subject>Macaca mulatta - genetics</subject><subject>Macaca mulatta - metabolism</subject><subject>Male</subject><subject>Matrix Metalloproteinase 20 - genetics</subject><subject>Matrix Metalloproteinase 20 - metabolism</subject><subject>Methodology and general studies</subject><subject>MMP20</subject><subject>Phylogeny</subject><subject>Prehistory and protohistory</subject><subject>Primate comparative genomics</subject><subject>Selection, Genetic</subject><subject>Sequence Alignment</subject><issn>0047-2484</issn><issn>1095-8606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAQhq2qqCy0b1BVvlTqJWHsOHZyQUKIAhISF3q2HGfCepvYi50g8fZ4tQvcOI00-v75Rx8hPxmUDJg825SbNT6HseTARAmsBKi_kBWDti4aCfIrWQEIVXDRiGNyktIGAFpR8W_kOO8YKGhXRF-jx9lZasO0NdGl4BN9cTj21PnkHtdznnOg8xrprm2ZXfA0DBS9mXDMe2f_e0yJ9kt0_pGul8n4D_Q7ORrMmPDHYZ6Sf3-vHi5virv769vLi7vCCsnnQiou-DAoxmUHRoKqTa0YNgJMZ3jfIbam643kVVsNnWSqRbS2ZkI0jWobVZ2SP_u72xieFkyznlyyOI7GY1iSZnVdMRAtrzIq9qiNIaWIg95GN5n4ohnonVq90Xu1eqdWA9NZbY79OjQs3YT9e-jNZQZ-HwCTrBmHaLx16YNrVD7Ddv3new6zj2eHUSfr0FvsXUQ76z64zz95BcELmj4</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Horvath, Julie E.</creator><creator>Ramachandran, Gowri L.</creator><creator>Fedrigo, Olivier</creator><creator>Nielsen, William J.</creator><creator>Babbitt, Courtney C.</creator><creator>St. Clair, Elizabeth M.</creator><creator>Pfefferle, Lisa W.</creator><creator>Jernvall, Jukka</creator><creator>Wray, Gregory A.</creator><creator>Wall, Christine E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140801</creationdate><title>Genetic comparisons yield insight into the evolution of enamel thickness during human evolution</title><author>Horvath, Julie E. ; Ramachandran, Gowri L. ; Fedrigo, Olivier ; Nielsen, William J. ; Babbitt, Courtney C. ; St. Clair, Elizabeth M. ; Pfefferle, Lisa W. ; Jernvall, Jukka ; Wray, Gregory A. ; Wall, Christine E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-67242ff7126b0a6075a571e840aba2dbee9abda62393fb6179eecc51448879873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AMBN</topic><topic>AMELX</topic><topic>Animals</topic><topic>Anthropological methods</topic><topic>Base Sequence</topic><topic>Dental Enamel - anatomy & histology</topic><topic>Dental Enamel Proteins - genetics</topic><topic>Dental Enamel Proteins - metabolism</topic><topic>ENAM</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Hominidae - anatomy & histology</topic><topic>Hominidae - genetics</topic><topic>Hominidae - metabolism</topic><topic>Human paleontology</topic><topic>Humans</topic><topic>Hylobatidae - anatomy & histology</topic><topic>Hylobatidae - genetics</topic><topic>Hylobatidae - metabolism</topic><topic>Macaca mulatta - anatomy & histology</topic><topic>Macaca mulatta - genetics</topic><topic>Macaca mulatta - metabolism</topic><topic>Male</topic><topic>Matrix Metalloproteinase 20 - genetics</topic><topic>Matrix Metalloproteinase 20 - metabolism</topic><topic>Methodology and general studies</topic><topic>MMP20</topic><topic>Phylogeny</topic><topic>Prehistory and protohistory</topic><topic>Primate comparative genomics</topic><topic>Selection, Genetic</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horvath, Julie E.</creatorcontrib><creatorcontrib>Ramachandran, Gowri L.</creatorcontrib><creatorcontrib>Fedrigo, Olivier</creatorcontrib><creatorcontrib>Nielsen, William J.</creatorcontrib><creatorcontrib>Babbitt, Courtney C.</creatorcontrib><creatorcontrib>St. Clair, Elizabeth M.</creatorcontrib><creatorcontrib>Pfefferle, Lisa W.</creatorcontrib><creatorcontrib>Jernvall, Jukka</creatorcontrib><creatorcontrib>Wray, Gregory A.</creatorcontrib><creatorcontrib>Wall, Christine E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of human evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horvath, Julie E.</au><au>Ramachandran, Gowri L.</au><au>Fedrigo, Olivier</au><au>Nielsen, William J.</au><au>Babbitt, Courtney C.</au><au>St. Clair, Elizabeth M.</au><au>Pfefferle, Lisa W.</au><au>Jernvall, Jukka</au><au>Wray, Gregory A.</au><au>Wall, Christine E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic comparisons yield insight into the evolution of enamel thickness during human evolution</atitle><jtitle>Journal of human evolution</jtitle><addtitle>J Hum Evol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>73</volume><spage>75</spage><epage>87</epage><pages>75-87</pages><issn>0047-2484</issn><eissn>1095-8606</eissn><abstract>Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that code for the enamel matrix proteins and the associated protease. The evolution of thick enamel in humans may have included changes in the regulation of these genes during tooth development. The cis-regulatory region in the 5′ flank (upstream non-coding region) of MMP20, which codes for enamelysin, the predominant protease active during enamel secretion, has previously been shown to be under strong positive selection in the lineages leading to both humans and chimpanzees. Here we examine evidence for positive selection in the 5′ flank and 3′ flank of AMELX, AMBN, ENAM, and MMP20. We contrast the human sequence changes with other hominoids (chimpanzees, gorillas, orangutans, gibbons) and rhesus macaques (outgroup), a sample comprising a range of enamel thickness. We find no evidence for positive selection in the protein-coding regions of any of these genes. In contrast, we find strong evidence for positive selection in the 5′ flank region of MMP20 and ENAM along the lineage leading to humans, and in both the 5′ flank and 3′ flank regions of MMP20 along the lineage leading to chimpanzees. We also identify putative transcription factor binding sites overlapping some of the species-specific nucleotide sites and we refine which sections of the up- and downstream putative regulatory regions are most likely to harbor important changes. These non-coding changes and their potential for differential regulation by transcription factors known to regulate tooth development may offer insight into the mechanisms that allow for rapid evolutionary changes in enamel thickness across closely-related species, and contribute to our understanding of the enamel phenotype in hominoids.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24810709</pmid><doi>10.1016/j.jhevol.2014.01.005</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2484 |
ispartof | Journal of human evolution, 2014-08, Vol.73, p.75-87 |
issn | 0047-2484 1095-8606 |
language | eng |
recordid | cdi_proquest_miscellaneous_1553104923 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | AMBN AMELX Animals Anthropological methods Base Sequence Dental Enamel - anatomy & histology Dental Enamel Proteins - genetics Dental Enamel Proteins - metabolism ENAM Extracellular Matrix Proteins - genetics Extracellular Matrix Proteins - metabolism Hominidae - anatomy & histology Hominidae - genetics Hominidae - metabolism Human paleontology Humans Hylobatidae - anatomy & histology Hylobatidae - genetics Hylobatidae - metabolism Macaca mulatta - anatomy & histology Macaca mulatta - genetics Macaca mulatta - metabolism Male Matrix Metalloproteinase 20 - genetics Matrix Metalloproteinase 20 - metabolism Methodology and general studies MMP20 Phylogeny Prehistory and protohistory Primate comparative genomics Selection, Genetic Sequence Alignment |
title | Genetic comparisons yield insight into the evolution of enamel thickness during human evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20comparisons%20yield%20insight%20into%20the%20evolution%20of%20enamel%20thickness%20during%20human%20evolution&rft.jtitle=Journal%20of%20human%20evolution&rft.au=Horvath,%20Julie%20E.&rft.date=2014-08-01&rft.volume=73&rft.spage=75&rft.epage=87&rft.pages=75-87&rft.issn=0047-2484&rft.eissn=1095-8606&rft_id=info:doi/10.1016/j.jhevol.2014.01.005&rft_dat=%3Cproquest_cross%3E1553104923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553104923&rft_id=info:pmid/24810709&rft_els_id=S0047248414000888&rfr_iscdi=true |