Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival

Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx+ cells in primary brain tumor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2014-08, Vol.15 (2), p.185-198
Hauptverfasser: Zhu, Zhe, Khan, Muhammad Amir, Weiler, Markus, Blaes, Jonas, Jestaedt, Leonie, Geibert, Madeleine, Zou, Peng, Gronych, Jan, Bernhardt, Olga, Korshunov, Andrey, Bugner, Verena, Lichter, Peter, Radlwimmer, Bernhard, Heiland, Sabine, Bendszus, Martin, Wick, Wolfgang, Liu, Hai-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 2
container_start_page 185
container_title Cell stem cell
container_volume 15
creator Zhu, Zhe
Khan, Muhammad Amir
Weiler, Markus
Blaes, Jonas
Jestaedt, Leonie
Geibert, Madeleine
Zou, Peng
Gronych, Jan
Bernhardt, Olga
Korshunov, Andrey
Bugner, Verena
Lichter, Peter
Radlwimmer, Bernhard
Heiland, Sabine
Bendszus, Martin
Wick, Wolfgang
Liu, Hai-Kun
description Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx+ cells in primary brain tumors are mostly quiescent. Lineage tracing demonstrates that single Tlx+ cells can self-renew and generate Tlx− tumor cells in primary tumors, suggesting that they are brain tumor stem cells (BTSCs). After introducing a BTSC-specific knock-out of the Tlx gene in primary mouse tumors, we observed a loss of self-renewal of BTSCs and prolongation of animal survival, accompanied by induction of essential signaling pathways mediating cell-cycle arrest, cell death, and neural differentiation. Our study demonstrates the feasibility of targeting glioblastomas and indicates the suitability of BTSCs as therapeutic targets, thereby supporting the CSC hypothesis. [Display omitted] •A mouse brain tumor model for tumor stem cell-specific gene targeting is presented•Tlx is only expressed in brain tumor stem cells of mouse primary gliomas in vivo•BTSC-specific knock-out of Tlx leads to the loss of BTSCs and prolonged survival•Loss of BTSCs leads to cell death, cell-cycle arrest, and differentiation Zhu et al. demonstrate that cells expressing the neural stem cell marker Tlx in glioblastoma are largely quiescent, but can self-renew to generate Tlx− tumors. Inducibly targeting TLx in Nestin-expressing brain tumor cells results in cell death, cell-cycle arrest, and neural differentiation.
doi_str_mv 10.1016/j.stem.2014.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1552373172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590914001441</els_id><sourcerecordid>1552373172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-a1fcddc15dadb9965535063680fe354307811f615a061a8f538f0d9ea570b9053</originalsourceid><addsrcrecordid>eNp9UF2rEzEQDaJ4P_QP-CB59GXrZNPZbMAXLXrvhYJi63NIN5OasrupyW7Ff29Kr-KTcGCGmXMOM4exVwIWAkTz9rDIEw2LGsRyAQWgnrBr0SqstFLqaem1XFaoQV-xm5wPAKgEqOfsql62ErHR1-y4tWlPUxj3fEO9r77SSD9tz8PI78P-e3WXrCP-Idky2M5DTJmvybrMp8jXMWce_b9bvikX8RX1feZ2dPxLin0c9-T4Zk6ncLL9C_bM2z7Ty8d6y759-rhd3Vfrz3cPq_frqkPZTJUVvnOuE-is22ndIEqERjYteJK4lKBaIXwj0EIjbOtRth6cJosKdhpQ3rI3F99jij9mypMZQu7KYXakOGcjEGuppFB1odYXapfKR4m8OaYw2PTLCDDnpM3BnJM256QNFIAqoteP_vNuIPdX8ifaQnh3IVD58hQomdwFGjtyIVE3GRfD__x_AzRMjqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552373172</pqid></control><display><type>article</type><title>Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Zhe ; Khan, Muhammad Amir ; Weiler, Markus ; Blaes, Jonas ; Jestaedt, Leonie ; Geibert, Madeleine ; Zou, Peng ; Gronych, Jan ; Bernhardt, Olga ; Korshunov, Andrey ; Bugner, Verena ; Lichter, Peter ; Radlwimmer, Bernhard ; Heiland, Sabine ; Bendszus, Martin ; Wick, Wolfgang ; Liu, Hai-Kun</creator><creatorcontrib>Zhu, Zhe ; Khan, Muhammad Amir ; Weiler, Markus ; Blaes, Jonas ; Jestaedt, Leonie ; Geibert, Madeleine ; Zou, Peng ; Gronych, Jan ; Bernhardt, Olga ; Korshunov, Andrey ; Bugner, Verena ; Lichter, Peter ; Radlwimmer, Bernhard ; Heiland, Sabine ; Bendszus, Martin ; Wick, Wolfgang ; Liu, Hai-Kun</creatorcontrib><description>Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx+ cells in primary brain tumors are mostly quiescent. Lineage tracing demonstrates that single Tlx+ cells can self-renew and generate Tlx− tumor cells in primary tumors, suggesting that they are brain tumor stem cells (BTSCs). After introducing a BTSC-specific knock-out of the Tlx gene in primary mouse tumors, we observed a loss of self-renewal of BTSCs and prolongation of animal survival, accompanied by induction of essential signaling pathways mediating cell-cycle arrest, cell death, and neural differentiation. Our study demonstrates the feasibility of targeting glioblastomas and indicates the suitability of BTSCs as therapeutic targets, thereby supporting the CSC hypothesis. [Display omitted] •A mouse brain tumor model for tumor stem cell-specific gene targeting is presented•Tlx is only expressed in brain tumor stem cells of mouse primary gliomas in vivo•BTSC-specific knock-out of Tlx leads to the loss of BTSCs and prolonged survival•Loss of BTSCs leads to cell death, cell-cycle arrest, and differentiation Zhu et al. demonstrate that cells expressing the neural stem cell marker Tlx in glioblastoma are largely quiescent, but can self-renew to generate Tlx− tumors. Inducibly targeting TLx in Nestin-expressing brain tumor cells results in cell death, cell-cycle arrest, and neural differentiation.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2014.04.007</identifier><identifier>PMID: 24835569</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; Brain - pathology ; Brain Neoplasms - pathology ; Cell Cycle ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cell Survival ; Glioma - metabolism ; Glioma - pathology ; Green Fluorescent Proteins - metabolism ; Humans ; Mice ; Neoplasm Transplantation ; Neoplastic Stem Cells - pathology ; Nestin - metabolism ; Neurons - cytology ; Signal Transduction ; Xenograft Model Antitumor Assays</subject><ispartof>Cell stem cell, 2014-08, Vol.15 (2), p.185-198</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-a1fcddc15dadb9965535063680fe354307811f615a061a8f538f0d9ea570b9053</citedby><cites>FETCH-LOGICAL-c536t-a1fcddc15dadb9965535063680fe354307811f615a061a8f538f0d9ea570b9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2014.04.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24835569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Zhe</creatorcontrib><creatorcontrib>Khan, Muhammad Amir</creatorcontrib><creatorcontrib>Weiler, Markus</creatorcontrib><creatorcontrib>Blaes, Jonas</creatorcontrib><creatorcontrib>Jestaedt, Leonie</creatorcontrib><creatorcontrib>Geibert, Madeleine</creatorcontrib><creatorcontrib>Zou, Peng</creatorcontrib><creatorcontrib>Gronych, Jan</creatorcontrib><creatorcontrib>Bernhardt, Olga</creatorcontrib><creatorcontrib>Korshunov, Andrey</creatorcontrib><creatorcontrib>Bugner, Verena</creatorcontrib><creatorcontrib>Lichter, Peter</creatorcontrib><creatorcontrib>Radlwimmer, Bernhard</creatorcontrib><creatorcontrib>Heiland, Sabine</creatorcontrib><creatorcontrib>Bendszus, Martin</creatorcontrib><creatorcontrib>Wick, Wolfgang</creatorcontrib><creatorcontrib>Liu, Hai-Kun</creatorcontrib><title>Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx+ cells in primary brain tumors are mostly quiescent. Lineage tracing demonstrates that single Tlx+ cells can self-renew and generate Tlx− tumor cells in primary tumors, suggesting that they are brain tumor stem cells (BTSCs). After introducing a BTSC-specific knock-out of the Tlx gene in primary mouse tumors, we observed a loss of self-renewal of BTSCs and prolongation of animal survival, accompanied by induction of essential signaling pathways mediating cell-cycle arrest, cell death, and neural differentiation. Our study demonstrates the feasibility of targeting glioblastomas and indicates the suitability of BTSCs as therapeutic targets, thereby supporting the CSC hypothesis. [Display omitted] •A mouse brain tumor model for tumor stem cell-specific gene targeting is presented•Tlx is only expressed in brain tumor stem cells of mouse primary gliomas in vivo•BTSC-specific knock-out of Tlx leads to the loss of BTSCs and prolonged survival•Loss of BTSCs leads to cell death, cell-cycle arrest, and differentiation Zhu et al. demonstrate that cells expressing the neural stem cell marker Tlx in glioblastoma are largely quiescent, but can self-renew to generate Tlx− tumors. Inducibly targeting TLx in Nestin-expressing brain tumor cells results in cell death, cell-cycle arrest, and neural differentiation.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Cycle</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Neoplasm Transplantation</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Nestin - metabolism</subject><subject>Neurons - cytology</subject><subject>Signal Transduction</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UF2rEzEQDaJ4P_QP-CB59GXrZNPZbMAXLXrvhYJi63NIN5OasrupyW7Ff29Kr-KTcGCGmXMOM4exVwIWAkTz9rDIEw2LGsRyAQWgnrBr0SqstFLqaem1XFaoQV-xm5wPAKgEqOfsql62ErHR1-y4tWlPUxj3fEO9r77SSD9tz8PI78P-e3WXrCP-Idky2M5DTJmvybrMp8jXMWce_b9bvikX8RX1feZ2dPxLin0c9-T4Zk6ncLL9C_bM2z7Ty8d6y759-rhd3Vfrz3cPq_frqkPZTJUVvnOuE-is22ndIEqERjYteJK4lKBaIXwj0EIjbOtRth6cJosKdhpQ3rI3F99jij9mypMZQu7KYXakOGcjEGuppFB1odYXapfKR4m8OaYw2PTLCDDnpM3BnJM256QNFIAqoteP_vNuIPdX8ifaQnh3IVD58hQomdwFGjtyIVE3GRfD__x_AzRMjqI</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Zhu, Zhe</creator><creator>Khan, Muhammad Amir</creator><creator>Weiler, Markus</creator><creator>Blaes, Jonas</creator><creator>Jestaedt, Leonie</creator><creator>Geibert, Madeleine</creator><creator>Zou, Peng</creator><creator>Gronych, Jan</creator><creator>Bernhardt, Olga</creator><creator>Korshunov, Andrey</creator><creator>Bugner, Verena</creator><creator>Lichter, Peter</creator><creator>Radlwimmer, Bernhard</creator><creator>Heiland, Sabine</creator><creator>Bendszus, Martin</creator><creator>Wick, Wolfgang</creator><creator>Liu, Hai-Kun</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140807</creationdate><title>Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival</title><author>Zhu, Zhe ; Khan, Muhammad Amir ; Weiler, Markus ; Blaes, Jonas ; Jestaedt, Leonie ; Geibert, Madeleine ; Zou, Peng ; Gronych, Jan ; Bernhardt, Olga ; Korshunov, Andrey ; Bugner, Verena ; Lichter, Peter ; Radlwimmer, Bernhard ; Heiland, Sabine ; Bendszus, Martin ; Wick, Wolfgang ; Liu, Hai-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-a1fcddc15dadb9965535063680fe354307811f615a061a8f538f0d9ea570b9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Cycle</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Neoplasm Transplantation</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Nestin - metabolism</topic><topic>Neurons - cytology</topic><topic>Signal Transduction</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhe</creatorcontrib><creatorcontrib>Khan, Muhammad Amir</creatorcontrib><creatorcontrib>Weiler, Markus</creatorcontrib><creatorcontrib>Blaes, Jonas</creatorcontrib><creatorcontrib>Jestaedt, Leonie</creatorcontrib><creatorcontrib>Geibert, Madeleine</creatorcontrib><creatorcontrib>Zou, Peng</creatorcontrib><creatorcontrib>Gronych, Jan</creatorcontrib><creatorcontrib>Bernhardt, Olga</creatorcontrib><creatorcontrib>Korshunov, Andrey</creatorcontrib><creatorcontrib>Bugner, Verena</creatorcontrib><creatorcontrib>Lichter, Peter</creatorcontrib><creatorcontrib>Radlwimmer, Bernhard</creatorcontrib><creatorcontrib>Heiland, Sabine</creatorcontrib><creatorcontrib>Bendszus, Martin</creatorcontrib><creatorcontrib>Wick, Wolfgang</creatorcontrib><creatorcontrib>Liu, Hai-Kun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhe</au><au>Khan, Muhammad Amir</au><au>Weiler, Markus</au><au>Blaes, Jonas</au><au>Jestaedt, Leonie</au><au>Geibert, Madeleine</au><au>Zou, Peng</au><au>Gronych, Jan</au><au>Bernhardt, Olga</au><au>Korshunov, Andrey</au><au>Bugner, Verena</au><au>Lichter, Peter</au><au>Radlwimmer, Bernhard</au><au>Heiland, Sabine</au><au>Bendszus, Martin</au><au>Wick, Wolfgang</au><au>Liu, Hai-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>15</volume><issue>2</issue><spage>185</spage><epage>198</epage><pages>185-198</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx+ cells in primary brain tumors are mostly quiescent. Lineage tracing demonstrates that single Tlx+ cells can self-renew and generate Tlx− tumor cells in primary tumors, suggesting that they are brain tumor stem cells (BTSCs). After introducing a BTSC-specific knock-out of the Tlx gene in primary mouse tumors, we observed a loss of self-renewal of BTSCs and prolongation of animal survival, accompanied by induction of essential signaling pathways mediating cell-cycle arrest, cell death, and neural differentiation. Our study demonstrates the feasibility of targeting glioblastomas and indicates the suitability of BTSCs as therapeutic targets, thereby supporting the CSC hypothesis. [Display omitted] •A mouse brain tumor model for tumor stem cell-specific gene targeting is presented•Tlx is only expressed in brain tumor stem cells of mouse primary gliomas in vivo•BTSC-specific knock-out of Tlx leads to the loss of BTSCs and prolonged survival•Loss of BTSCs leads to cell death, cell-cycle arrest, and differentiation Zhu et al. demonstrate that cells expressing the neural stem cell marker Tlx in glioblastoma are largely quiescent, but can self-renew to generate Tlx− tumors. Inducibly targeting TLx in Nestin-expressing brain tumor cells results in cell death, cell-cycle arrest, and neural differentiation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24835569</pmid><doi>10.1016/j.stem.2014.04.007</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2014-08, Vol.15 (2), p.185-198
issn 1934-5909
1875-9777
language eng
recordid cdi_proquest_miscellaneous_1552373172
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Apoptosis
Brain - pathology
Brain Neoplasms - pathology
Cell Cycle
Cell Differentiation
Cell Lineage
Cell Proliferation
Cell Survival
Glioma - metabolism
Glioma - pathology
Green Fluorescent Proteins - metabolism
Humans
Mice
Neoplasm Transplantation
Neoplastic Stem Cells - pathology
Nestin - metabolism
Neurons - cytology
Signal Transduction
Xenograft Model Antitumor Assays
title Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20Self-Renewal%20in%20High-Grade%20Brain%20Tumors%20Leads%20to%20Loss%20of%20Brain%20Tumor%20Stem%20Cells%20and%20Prolonged%20Survival&rft.jtitle=Cell%20stem%20cell&rft.au=Zhu,%20Zhe&rft.date=2014-08-07&rft.volume=15&rft.issue=2&rft.spage=185&rft.epage=198&rft.pages=185-198&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2014.04.007&rft_dat=%3Cproquest_cross%3E1552373172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552373172&rft_id=info:pmid/24835569&rft_els_id=S1934590914001441&rfr_iscdi=true