Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function

We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2014-09, Vol.118 (3), p.327-332
Hauptverfasser: Hattori, Koji, Munehira, Yoichi, Kobayashi, Hideki, Satoh, Taku, Sugiura, Shinji, Kanamori, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 3
container_start_page 327
container_title Journal of bioscience and bioengineering
container_volume 118
creator Hattori, Koji
Munehira, Yoichi
Kobayashi, Hideki
Satoh, Taku
Sugiura, Shinji
Kanamori, Toshiyuki
description We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.
doi_str_mv 10.1016/j.jbiosc.2014.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1552370319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389172314000589</els_id><sourcerecordid>1552370319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</originalsourceid><addsrcrecordid>eNp9kDuP1DAQgC0E4h7wDxByg0ST4HGcOGmQ0Ak4pEM0UFuOPb71KhsvnmSlq_jreG8X6KjG8nzz-hh7BaIGAd27bb0dYyJXSwGqFrIWonvCLqFRulJKwtPjux8q0LK5YFdEWyFACw3P2YVUXSM6UJfs19focgrTGn10fI85rBTTzN06LWtG7jZxz_c5HUp-vuc-hoAZ54XTUsL9siGeAqcN2vz4RcRDytzOdnqg-Jg8WCrdSh5nn5YNTtFOPKyzW8qgF-xZsBPhy3O8Zj8-ffx-c1vdffv85ebDXeVaMSyVlq1vEcQQrPTgu64dGvBDAFQ9SDUG1QL2fvTedgp9aMa-b70eeq8bMQx9c83envqWW36uSIvZRXI4TXbGtJKBtpWNFg0MBVUntIghyhjMPsedzQ8GhDmqN1tzUm-O6o2QpqgvZa_PE9Zxh_5v0R_XBXhzBooQO4VsZxfpH9dr3ZezCvf-xGHxcYiYDbmIs0MfM7rF-BT_v8lvBlim7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552370319</pqid></control><display><type>article</type><title>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hattori, Koji ; Munehira, Yoichi ; Kobayashi, Hideki ; Satoh, Taku ; Sugiura, Shinji ; Kanamori, Toshiyuki</creator><creatorcontrib>Hattori, Koji ; Munehira, Yoichi ; Kobayashi, Hideki ; Satoh, Taku ; Sugiura, Shinji ; Kanamori, Toshiyuki</creatorcontrib><description>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.</description><identifier>ISSN: 1389-1723</identifier><identifier>EISSN: 1347-4421</identifier><identifier>DOI: 10.1016/j.jbiosc.2014.02.006</identifier><identifier>PMID: 24630614</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biotechnology ; Cell Count ; Cells, Cultured ; Endothelial cell ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Mechanotransduction, Cellular - genetics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidic device ; Nitric Oxide Synthase Type III - genetics ; Nitric Oxide Synthase Type III - metabolism ; Perfusion ; Perfusion culture ; Quantitative PCR ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Shear Strength ; Shear stress ; Stress, Mechanical ; Thrombomodulin - genetics ; Thrombomodulin - metabolism</subject><ispartof>Journal of bioscience and bioengineering, 2014-09, Vol.118 (3), p.327-332</ispartof><rights>2014 The Society for Biotechnology, Japan</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</citedby><cites>FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiosc.2014.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28778593$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24630614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattori, Koji</creatorcontrib><creatorcontrib>Munehira, Yoichi</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Satoh, Taku</creatorcontrib><creatorcontrib>Sugiura, Shinji</creatorcontrib><creatorcontrib>Kanamori, Toshiyuki</creatorcontrib><title>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</title><title>Journal of bioscience and bioengineering</title><addtitle>J Biosci Bioeng</addtitle><description>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Count</subject><subject>Cells, Cultured</subject><subject>Endothelial cell</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Mechanotransduction, Cellular - genetics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidic device</subject><subject>Nitric Oxide Synthase Type III - genetics</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>Perfusion</subject><subject>Perfusion culture</subject><subject>Quantitative PCR</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Shear Strength</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Thrombomodulin - genetics</subject><subject>Thrombomodulin - metabolism</subject><issn>1389-1723</issn><issn>1347-4421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDuP1DAQgC0E4h7wDxByg0ST4HGcOGmQ0Ak4pEM0UFuOPb71KhsvnmSlq_jreG8X6KjG8nzz-hh7BaIGAd27bb0dYyJXSwGqFrIWonvCLqFRulJKwtPjux8q0LK5YFdEWyFACw3P2YVUXSM6UJfs19focgrTGn10fI85rBTTzN06LWtG7jZxz_c5HUp-vuc-hoAZ54XTUsL9siGeAqcN2vz4RcRDytzOdnqg-Jg8WCrdSh5nn5YNTtFOPKyzW8qgF-xZsBPhy3O8Zj8-ffx-c1vdffv85ebDXeVaMSyVlq1vEcQQrPTgu64dGvBDAFQ9SDUG1QL2fvTedgp9aMa-b70eeq8bMQx9c83envqWW36uSIvZRXI4TXbGtJKBtpWNFg0MBVUntIghyhjMPsedzQ8GhDmqN1tzUm-O6o2QpqgvZa_PE9Zxh_5v0R_XBXhzBooQO4VsZxfpH9dr3ZezCvf-xGHxcYiYDbmIs0MfM7rF-BT_v8lvBlim7g</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Hattori, Koji</creator><creator>Munehira, Yoichi</creator><creator>Kobayashi, Hideki</creator><creator>Satoh, Taku</creator><creator>Sugiura, Shinji</creator><creator>Kanamori, Toshiyuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</title><author>Hattori, Koji ; Munehira, Yoichi ; Kobayashi, Hideki ; Satoh, Taku ; Sugiura, Shinji ; Kanamori, Toshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Count</topic><topic>Cells, Cultured</topic><topic>Endothelial cell</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Mechanotransduction, Cellular - genetics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidic device</topic><topic>Nitric Oxide Synthase Type III - genetics</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>Perfusion</topic><topic>Perfusion culture</topic><topic>Quantitative PCR</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Shear Strength</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Thrombomodulin - genetics</topic><topic>Thrombomodulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattori, Koji</creatorcontrib><creatorcontrib>Munehira, Yoichi</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Satoh, Taku</creatorcontrib><creatorcontrib>Sugiura, Shinji</creatorcontrib><creatorcontrib>Kanamori, Toshiyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioscience and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattori, Koji</au><au>Munehira, Yoichi</au><au>Kobayashi, Hideki</au><au>Satoh, Taku</au><au>Sugiura, Shinji</au><au>Kanamori, Toshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</atitle><jtitle>Journal of bioscience and bioengineering</jtitle><addtitle>J Biosci Bioeng</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>118</volume><issue>3</issue><spage>327</spage><epage>332</epage><pages>327-332</pages><issn>1389-1723</issn><eissn>1347-4421</eissn><abstract>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24630614</pmid><doi>10.1016/j.jbiosc.2014.02.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-1723
ispartof Journal of bioscience and bioengineering, 2014-09, Vol.118 (3), p.327-332
issn 1389-1723
1347-4421
language eng
recordid cdi_proquest_miscellaneous_1552370319
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biological and medical sciences
Biotechnology
Cell Count
Cells, Cultured
Endothelial cell
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression
Human Umbilical Vein Endothelial Cells - cytology
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Mechanotransduction, Cellular - genetics
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidic device
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
Perfusion
Perfusion culture
Quantitative PCR
RNA, Messenger - genetics
RNA, Messenger - metabolism
Shear Strength
Shear stress
Stress, Mechanical
Thrombomodulin - genetics
Thrombomodulin - metabolism
title Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20perfusion%20culture%20chip%20providing%20different%20strengths%20of%20shear%20stress%20for%20analysis%20of%20vascular%20endothelial%20function&rft.jtitle=Journal%20of%20bioscience%20and%20bioengineering&rft.au=Hattori,%20Koji&rft.date=2014-09-01&rft.volume=118&rft.issue=3&rft.spage=327&rft.epage=332&rft.pages=327-332&rft.issn=1389-1723&rft.eissn=1347-4421&rft_id=info:doi/10.1016/j.jbiosc.2014.02.006&rft_dat=%3Cproquest_cross%3E1552370319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552370319&rft_id=info:pmid/24630614&rft_els_id=S1389172314000589&rfr_iscdi=true