Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function
We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cel...
Gespeichert in:
Veröffentlicht in: | Journal of bioscience and bioengineering 2014-09, Vol.118 (3), p.327-332 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | Journal of bioscience and bioengineering |
container_volume | 118 |
creator | Hattori, Koji Munehira, Yoichi Kobayashi, Hideki Satoh, Taku Sugiura, Shinji Kanamori, Toshiyuki |
description | We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2. |
doi_str_mv | 10.1016/j.jbiosc.2014.02.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1552370319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389172314000589</els_id><sourcerecordid>1552370319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</originalsourceid><addsrcrecordid>eNp9kDuP1DAQgC0E4h7wDxByg0ST4HGcOGmQ0Ak4pEM0UFuOPb71KhsvnmSlq_jreG8X6KjG8nzz-hh7BaIGAd27bb0dYyJXSwGqFrIWonvCLqFRulJKwtPjux8q0LK5YFdEWyFACw3P2YVUXSM6UJfs19focgrTGn10fI85rBTTzN06LWtG7jZxz_c5HUp-vuc-hoAZ54XTUsL9siGeAqcN2vz4RcRDytzOdnqg-Jg8WCrdSh5nn5YNTtFOPKyzW8qgF-xZsBPhy3O8Zj8-ffx-c1vdffv85ebDXeVaMSyVlq1vEcQQrPTgu64dGvBDAFQ9SDUG1QL2fvTedgp9aMa-b70eeq8bMQx9c83envqWW36uSIvZRXI4TXbGtJKBtpWNFg0MBVUntIghyhjMPsedzQ8GhDmqN1tzUm-O6o2QpqgvZa_PE9Zxh_5v0R_XBXhzBooQO4VsZxfpH9dr3ZezCvf-xGHxcYiYDbmIs0MfM7rF-BT_v8lvBlim7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552370319</pqid></control><display><type>article</type><title>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hattori, Koji ; Munehira, Yoichi ; Kobayashi, Hideki ; Satoh, Taku ; Sugiura, Shinji ; Kanamori, Toshiyuki</creator><creatorcontrib>Hattori, Koji ; Munehira, Yoichi ; Kobayashi, Hideki ; Satoh, Taku ; Sugiura, Shinji ; Kanamori, Toshiyuki</creatorcontrib><description>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.</description><identifier>ISSN: 1389-1723</identifier><identifier>EISSN: 1347-4421</identifier><identifier>DOI: 10.1016/j.jbiosc.2014.02.006</identifier><identifier>PMID: 24630614</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biotechnology ; Cell Count ; Cells, Cultured ; Endothelial cell ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Mechanotransduction, Cellular - genetics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidic device ; Nitric Oxide Synthase Type III - genetics ; Nitric Oxide Synthase Type III - metabolism ; Perfusion ; Perfusion culture ; Quantitative PCR ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Shear Strength ; Shear stress ; Stress, Mechanical ; Thrombomodulin - genetics ; Thrombomodulin - metabolism</subject><ispartof>Journal of bioscience and bioengineering, 2014-09, Vol.118 (3), p.327-332</ispartof><rights>2014 The Society for Biotechnology, Japan</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</citedby><cites>FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiosc.2014.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28778593$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24630614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattori, Koji</creatorcontrib><creatorcontrib>Munehira, Yoichi</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Satoh, Taku</creatorcontrib><creatorcontrib>Sugiura, Shinji</creatorcontrib><creatorcontrib>Kanamori, Toshiyuki</creatorcontrib><title>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</title><title>Journal of bioscience and bioengineering</title><addtitle>J Biosci Bioeng</addtitle><description>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Count</subject><subject>Cells, Cultured</subject><subject>Endothelial cell</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Mechanotransduction, Cellular - genetics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidic device</subject><subject>Nitric Oxide Synthase Type III - genetics</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>Perfusion</subject><subject>Perfusion culture</subject><subject>Quantitative PCR</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Shear Strength</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Thrombomodulin - genetics</subject><subject>Thrombomodulin - metabolism</subject><issn>1389-1723</issn><issn>1347-4421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDuP1DAQgC0E4h7wDxByg0ST4HGcOGmQ0Ak4pEM0UFuOPb71KhsvnmSlq_jreG8X6KjG8nzz-hh7BaIGAd27bb0dYyJXSwGqFrIWonvCLqFRulJKwtPjux8q0LK5YFdEWyFACw3P2YVUXSM6UJfs19focgrTGn10fI85rBTTzN06LWtG7jZxz_c5HUp-vuc-hoAZ54XTUsL9siGeAqcN2vz4RcRDytzOdnqg-Jg8WCrdSh5nn5YNTtFOPKyzW8qgF-xZsBPhy3O8Zj8-ffx-c1vdffv85ebDXeVaMSyVlq1vEcQQrPTgu64dGvBDAFQ9SDUG1QL2fvTedgp9aMa-b70eeq8bMQx9c83envqWW36uSIvZRXI4TXbGtJKBtpWNFg0MBVUntIghyhjMPsedzQ8GhDmqN1tzUm-O6o2QpqgvZa_PE9Zxh_5v0R_XBXhzBooQO4VsZxfpH9dr3ZezCvf-xGHxcYiYDbmIs0MfM7rF-BT_v8lvBlim7g</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Hattori, Koji</creator><creator>Munehira, Yoichi</creator><creator>Kobayashi, Hideki</creator><creator>Satoh, Taku</creator><creator>Sugiura, Shinji</creator><creator>Kanamori, Toshiyuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</title><author>Hattori, Koji ; Munehira, Yoichi ; Kobayashi, Hideki ; Satoh, Taku ; Sugiura, Shinji ; Kanamori, Toshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-725d5e109fa2d1d665931d9f1e48124bf451e8dbdda64edf3b885d798d7309983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Count</topic><topic>Cells, Cultured</topic><topic>Endothelial cell</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Mechanotransduction, Cellular - genetics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidic device</topic><topic>Nitric Oxide Synthase Type III - genetics</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>Perfusion</topic><topic>Perfusion culture</topic><topic>Quantitative PCR</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Shear Strength</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Thrombomodulin - genetics</topic><topic>Thrombomodulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattori, Koji</creatorcontrib><creatorcontrib>Munehira, Yoichi</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Satoh, Taku</creatorcontrib><creatorcontrib>Sugiura, Shinji</creatorcontrib><creatorcontrib>Kanamori, Toshiyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioscience and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattori, Koji</au><au>Munehira, Yoichi</au><au>Kobayashi, Hideki</au><au>Satoh, Taku</au><au>Sugiura, Shinji</au><au>Kanamori, Toshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function</atitle><jtitle>Journal of bioscience and bioengineering</jtitle><addtitle>J Biosci Bioeng</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>118</volume><issue>3</issue><spage>327</spage><epage>332</epage><pages>327-332</pages><issn>1389-1723</issn><eissn>1347-4421</eissn><abstract>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm2 in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 105) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm2. Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24630614</pmid><doi>10.1016/j.jbiosc.2014.02.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1723 |
ispartof | Journal of bioscience and bioengineering, 2014-09, Vol.118 (3), p.327-332 |
issn | 1389-1723 1347-4421 |
language | eng |
recordid | cdi_proquest_miscellaneous_1552370319 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biological and medical sciences Biotechnology Cell Count Cells, Cultured Endothelial cell Endothelium, Vascular - cytology Endothelium, Vascular - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - metabolism Humans Mechanotransduction, Cellular - genetics Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidic device Nitric Oxide Synthase Type III - genetics Nitric Oxide Synthase Type III - metabolism Perfusion Perfusion culture Quantitative PCR RNA, Messenger - genetics RNA, Messenger - metabolism Shear Strength Shear stress Stress, Mechanical Thrombomodulin - genetics Thrombomodulin - metabolism |
title | Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20perfusion%20culture%20chip%20providing%20different%20strengths%20of%20shear%20stress%20for%20analysis%20of%20vascular%20endothelial%20function&rft.jtitle=Journal%20of%20bioscience%20and%20bioengineering&rft.au=Hattori,%20Koji&rft.date=2014-09-01&rft.volume=118&rft.issue=3&rft.spage=327&rft.epage=332&rft.pages=327-332&rft.issn=1389-1723&rft.eissn=1347-4421&rft_id=info:doi/10.1016/j.jbiosc.2014.02.006&rft_dat=%3Cproquest_cross%3E1552370319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552370319&rft_id=info:pmid/24630614&rft_els_id=S1389172314000589&rfr_iscdi=true |