Observation of the rose petal effect over single- and dual-scale roughness surfaces
Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Lang...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2014-08, Vol.25 (34), p.345303-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 34 |
container_start_page | 345303 |
container_title | Nanotechnology |
container_volume | 25 |
creator | Yeh, Kuan-Yu Cho, Kuan-Hung Yeh, Yu-Hao Promraksa, Arwut Huang, Chung-Hsuan Hsu, Cheng-Che Chen, Li-Jen |
description | Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness. |
doi_str_mv | 10.1088/0957-4484/25/34/345303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1552370109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629374680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</originalsourceid><addsrcrecordid>eNqN0U1rFTEUBuAgir1W_0LJRtDFeE-SydeyFK1C6V2o65BJTtopc2fGZKbQf-8M97YiCBUC2TwnJ7wvIWcMPjEwZgtW6qquTb3lcivq5UgB4gXZMKFYpSQ3L8nmCZ2QN6XcATBmOHtNTrhkAAb4hnzfNQXzvZ_aoadDotMt0jwUpCNOvqOYEoaJDveYaWn7mw4r6vtI4-y7qgTfrXq-ue2xFFrmnHzA8pa8Sr4r-O54n5KfXz7_uPhaXe0uv12cX1VBSpgqlOCjEiYmbqRtkuTIo9ZJoOLAFbDEDCBCExXqGG0TNPM2SeRCBQ9CnJIPh3fHPPyasUxu35aAXed7HObimNLaWmOk_g_KrdC1MvA8lZILDQzsQtWBhiWykjG5Mbd7nx8cA7fW5NYG3NqA49KJ2h1qWgbPjjvmZo_xaeyxlwW8PwK_ppyy70Nb_jijazDWLO7jwbXD6O6GOfdL4O76_Hr310I3xrRY_g_7zE9_A7QPtYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552370109</pqid></control><display><type>article</type><title>Observation of the rose petal effect over single- and dual-scale roughness surfaces</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yeh, Kuan-Yu ; Cho, Kuan-Hung ; Yeh, Yu-Hao ; Promraksa, Arwut ; Huang, Chung-Hsuan ; Hsu, Cheng-Che ; Chen, Li-Jen</creator><creatorcontrib>Yeh, Kuan-Yu ; Cho, Kuan-Hung ; Yeh, Yu-Hao ; Promraksa, Arwut ; Huang, Chung-Hsuan ; Hsu, Cheng-Che ; Chen, Li-Jen</creatorcontrib><description>Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/25/34/345303</identifier><identifier>PMID: 25100802</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Contact angle ; contact angle hysteresis ; Exact sciences and technology ; Hysteresis ; lotus effect ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Nanostructure ; petal effect ; Petals ; Physics ; plasma ; Roughness ; Solid-fluid interfaces ; superhydrophobic surfaces ; Surface roughness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Water drops ; Wetting</subject><ispartof>Nanotechnology, 2014-08, Vol.25 (34), p.345303-10</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</citedby><cites>FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/25/34/345303/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28740898$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25100802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Kuan-Yu</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Yeh, Yu-Hao</creatorcontrib><creatorcontrib>Promraksa, Arwut</creatorcontrib><creatorcontrib>Huang, Chung-Hsuan</creatorcontrib><creatorcontrib>Hsu, Cheng-Che</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><title>Observation of the rose petal effect over single- and dual-scale roughness surfaces</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Contact angle</subject><subject>contact angle hysteresis</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>lotus effect</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Nanostructure</subject><subject>petal effect</subject><subject>Petals</subject><subject>Physics</subject><subject>plasma</subject><subject>Roughness</subject><subject>Solid-fluid interfaces</subject><subject>superhydrophobic surfaces</subject><subject>Surface roughness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Water drops</subject><subject>Wetting</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1rFTEUBuAgir1W_0LJRtDFeE-SydeyFK1C6V2o65BJTtopc2fGZKbQf-8M97YiCBUC2TwnJ7wvIWcMPjEwZgtW6qquTb3lcivq5UgB4gXZMKFYpSQ3L8nmCZ2QN6XcATBmOHtNTrhkAAb4hnzfNQXzvZ_aoadDotMt0jwUpCNOvqOYEoaJDveYaWn7mw4r6vtI4-y7qgTfrXq-ue2xFFrmnHzA8pa8Sr4r-O54n5KfXz7_uPhaXe0uv12cX1VBSpgqlOCjEiYmbqRtkuTIo9ZJoOLAFbDEDCBCExXqGG0TNPM2SeRCBQ9CnJIPh3fHPPyasUxu35aAXed7HObimNLaWmOk_g_KrdC1MvA8lZILDQzsQtWBhiWykjG5Mbd7nx8cA7fW5NYG3NqA49KJ2h1qWgbPjjvmZo_xaeyxlwW8PwK_ppyy70Nb_jijazDWLO7jwbXD6O6GOfdL4O76_Hr310I3xrRY_g_7zE9_A7QPtYM</recordid><startdate>20140829</startdate><enddate>20140829</enddate><creator>Yeh, Kuan-Yu</creator><creator>Cho, Kuan-Hung</creator><creator>Yeh, Yu-Hao</creator><creator>Promraksa, Arwut</creator><creator>Huang, Chung-Hsuan</creator><creator>Hsu, Cheng-Che</creator><creator>Chen, Li-Jen</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140829</creationdate><title>Observation of the rose petal effect over single- and dual-scale roughness surfaces</title><author>Yeh, Kuan-Yu ; Cho, Kuan-Hung ; Yeh, Yu-Hao ; Promraksa, Arwut ; Huang, Chung-Hsuan ; Hsu, Cheng-Che ; Chen, Li-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Contact angle</topic><topic>contact angle hysteresis</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>lotus effect</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Nanostructure</topic><topic>petal effect</topic><topic>Petals</topic><topic>Physics</topic><topic>plasma</topic><topic>Roughness</topic><topic>Solid-fluid interfaces</topic><topic>superhydrophobic surfaces</topic><topic>Surface roughness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Water drops</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Kuan-Yu</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Yeh, Yu-Hao</creatorcontrib><creatorcontrib>Promraksa, Arwut</creatorcontrib><creatorcontrib>Huang, Chung-Hsuan</creatorcontrib><creatorcontrib>Hsu, Cheng-Che</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Kuan-Yu</au><au>Cho, Kuan-Hung</au><au>Yeh, Yu-Hao</au><au>Promraksa, Arwut</au><au>Huang, Chung-Hsuan</au><au>Hsu, Cheng-Che</au><au>Chen, Li-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the rose petal effect over single- and dual-scale roughness surfaces</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2014-08-29</date><risdate>2014</risdate><volume>25</volume><issue>34</issue><spage>345303</spage><epage>10</epage><pages>345303-10</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>25100802</pmid><doi>10.1088/0957-4484/25/34/345303</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2014-08, Vol.25 (34), p.345303-10 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1552370109 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Condensed matter: structure, mechanical and thermal properties Contact angle contact angle hysteresis Exact sciences and technology Hysteresis lotus effect Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Mechanical and acoustical properties of condensed matter Mechanical properties of nanoscale materials Nanostructure petal effect Petals Physics plasma Roughness Solid-fluid interfaces superhydrophobic surfaces Surface roughness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Water drops Wetting |
title | Observation of the rose petal effect over single- and dual-scale roughness surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20rose%20petal%20effect%20over%20single-%20and%20dual-scale%20roughness%20surfaces&rft.jtitle=Nanotechnology&rft.au=Yeh,%20Kuan-Yu&rft.date=2014-08-29&rft.volume=25&rft.issue=34&rft.spage=345303&rft.epage=10&rft.pages=345303-10&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/25/34/345303&rft_dat=%3Cproquest_pasca%3E1629374680%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552370109&rft_id=info:pmid/25100802&rfr_iscdi=true |