Observation of the rose petal effect over single- and dual-scale roughness surfaces

Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Lang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2014-08, Vol.25 (34), p.345303-10
Hauptverfasser: Yeh, Kuan-Yu, Cho, Kuan-Hung, Yeh, Yu-Hao, Promraksa, Arwut, Huang, Chung-Hsuan, Hsu, Cheng-Che, Chen, Li-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 34
container_start_page 345303
container_title Nanotechnology
container_volume 25
creator Yeh, Kuan-Yu
Cho, Kuan-Hung
Yeh, Yu-Hao
Promraksa, Arwut
Huang, Chung-Hsuan
Hsu, Cheng-Che
Chen, Li-Jen
description Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.
doi_str_mv 10.1088/0957-4484/25/34/345303
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1552370109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629374680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</originalsourceid><addsrcrecordid>eNqN0U1rFTEUBuAgir1W_0LJRtDFeE-SydeyFK1C6V2o65BJTtopc2fGZKbQf-8M97YiCBUC2TwnJ7wvIWcMPjEwZgtW6qquTb3lcivq5UgB4gXZMKFYpSQ3L8nmCZ2QN6XcATBmOHtNTrhkAAb4hnzfNQXzvZ_aoadDotMt0jwUpCNOvqOYEoaJDveYaWn7mw4r6vtI4-y7qgTfrXq-ue2xFFrmnHzA8pa8Sr4r-O54n5KfXz7_uPhaXe0uv12cX1VBSpgqlOCjEiYmbqRtkuTIo9ZJoOLAFbDEDCBCExXqGG0TNPM2SeRCBQ9CnJIPh3fHPPyasUxu35aAXed7HObimNLaWmOk_g_KrdC1MvA8lZILDQzsQtWBhiWykjG5Mbd7nx8cA7fW5NYG3NqA49KJ2h1qWgbPjjvmZo_xaeyxlwW8PwK_ppyy70Nb_jijazDWLO7jwbXD6O6GOfdL4O76_Hr310I3xrRY_g_7zE9_A7QPtYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552370109</pqid></control><display><type>article</type><title>Observation of the rose petal effect over single- and dual-scale roughness surfaces</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yeh, Kuan-Yu ; Cho, Kuan-Hung ; Yeh, Yu-Hao ; Promraksa, Arwut ; Huang, Chung-Hsuan ; Hsu, Cheng-Che ; Chen, Li-Jen</creator><creatorcontrib>Yeh, Kuan-Yu ; Cho, Kuan-Hung ; Yeh, Yu-Hao ; Promraksa, Arwut ; Huang, Chung-Hsuan ; Hsu, Cheng-Che ; Chen, Li-Jen</creatorcontrib><description>Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/25/34/345303</identifier><identifier>PMID: 25100802</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Contact angle ; contact angle hysteresis ; Exact sciences and technology ; Hysteresis ; lotus effect ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Nanostructure ; petal effect ; Petals ; Physics ; plasma ; Roughness ; Solid-fluid interfaces ; superhydrophobic surfaces ; Surface roughness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Water drops ; Wetting</subject><ispartof>Nanotechnology, 2014-08, Vol.25 (34), p.345303-10</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</citedby><cites>FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/25/34/345303/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28740898$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25100802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Kuan-Yu</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Yeh, Yu-Hao</creatorcontrib><creatorcontrib>Promraksa, Arwut</creatorcontrib><creatorcontrib>Huang, Chung-Hsuan</creatorcontrib><creatorcontrib>Hsu, Cheng-Che</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><title>Observation of the rose petal effect over single- and dual-scale roughness surfaces</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Contact angle</subject><subject>contact angle hysteresis</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>lotus effect</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Nanostructure</subject><subject>petal effect</subject><subject>Petals</subject><subject>Physics</subject><subject>plasma</subject><subject>Roughness</subject><subject>Solid-fluid interfaces</subject><subject>superhydrophobic surfaces</subject><subject>Surface roughness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Water drops</subject><subject>Wetting</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1rFTEUBuAgir1W_0LJRtDFeE-SydeyFK1C6V2o65BJTtopc2fGZKbQf-8M97YiCBUC2TwnJ7wvIWcMPjEwZgtW6qquTb3lcivq5UgB4gXZMKFYpSQ3L8nmCZ2QN6XcATBmOHtNTrhkAAb4hnzfNQXzvZ_aoadDotMt0jwUpCNOvqOYEoaJDveYaWn7mw4r6vtI4-y7qgTfrXq-ue2xFFrmnHzA8pa8Sr4r-O54n5KfXz7_uPhaXe0uv12cX1VBSpgqlOCjEiYmbqRtkuTIo9ZJoOLAFbDEDCBCExXqGG0TNPM2SeRCBQ9CnJIPh3fHPPyasUxu35aAXed7HObimNLaWmOk_g_KrdC1MvA8lZILDQzsQtWBhiWykjG5Mbd7nx8cA7fW5NYG3NqA49KJ2h1qWgbPjjvmZo_xaeyxlwW8PwK_ppyy70Nb_jijazDWLO7jwbXD6O6GOfdL4O76_Hr310I3xrRY_g_7zE9_A7QPtYM</recordid><startdate>20140829</startdate><enddate>20140829</enddate><creator>Yeh, Kuan-Yu</creator><creator>Cho, Kuan-Hung</creator><creator>Yeh, Yu-Hao</creator><creator>Promraksa, Arwut</creator><creator>Huang, Chung-Hsuan</creator><creator>Hsu, Cheng-Che</creator><creator>Chen, Li-Jen</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140829</creationdate><title>Observation of the rose petal effect over single- and dual-scale roughness surfaces</title><author>Yeh, Kuan-Yu ; Cho, Kuan-Hung ; Yeh, Yu-Hao ; Promraksa, Arwut ; Huang, Chung-Hsuan ; Hsu, Cheng-Che ; Chen, Li-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-e50ad638df2859bf52e2d77f3e6202601f180ee0bd6e7dd9bc71a9f5e236ca033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Contact angle</topic><topic>contact angle hysteresis</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>lotus effect</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Nanostructure</topic><topic>petal effect</topic><topic>Petals</topic><topic>Physics</topic><topic>plasma</topic><topic>Roughness</topic><topic>Solid-fluid interfaces</topic><topic>superhydrophobic surfaces</topic><topic>Surface roughness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Water drops</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Kuan-Yu</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Yeh, Yu-Hao</creatorcontrib><creatorcontrib>Promraksa, Arwut</creatorcontrib><creatorcontrib>Huang, Chung-Hsuan</creatorcontrib><creatorcontrib>Hsu, Cheng-Che</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Kuan-Yu</au><au>Cho, Kuan-Hung</au><au>Yeh, Yu-Hao</au><au>Promraksa, Arwut</au><au>Huang, Chung-Hsuan</au><au>Hsu, Cheng-Che</au><au>Chen, Li-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the rose petal effect over single- and dual-scale roughness surfaces</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2014-08-29</date><risdate>2014</risdate><volume>25</volume><issue>34</issue><spage>345303</spage><epage>10</epage><pages>345303-10</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Rose petals exhibit superhydrophobicity with strong adhesion to pin water drops, known as the 'petal effect.' It is generally believed that the petal effect is attributed to dual-scale roughness, that is, the surface possesses both a nanostructure and a microstructure (Feng et al 2008 Langmuir 24 4114). In this study, we demonstrate that the dual-scale roughness is not a necessary condition for a surface of the petal effect. A surface of single-scale roughness, either at the nanoscale or the microscale alone, within a certain roughness region may also exhibit the petal effect. The surface roughness plays the essential role on the wetting behavior and governs the contact angle in the Wenzel or Cassie state, as well as the contact angle hysteresis. A water drop on the surface of the petal effect under the condition of the advancing and receding contact angle would fall into, respectively, the Cassie and Wenzel state, which leads to a contact angle hysteresis large enough to pin the water drop. On both single and dual textured hydrophobic surfaces, a sequence of wetting transitions: Wenzel state → petal state (sticky superhydrophobic state) → lotus state (slippery superhydrophobic state) is consistently observed by simply increasing the surface roughness.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>25100802</pmid><doi>10.1088/0957-4484/25/34/345303</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2014-08, Vol.25 (34), p.345303-10
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_1552370109
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: structure, mechanical and thermal properties
Contact angle
contact angle hysteresis
Exact sciences and technology
Hysteresis
lotus effect
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Nanostructure
petal effect
Petals
Physics
plasma
Roughness
Solid-fluid interfaces
superhydrophobic surfaces
Surface roughness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Water drops
Wetting
title Observation of the rose petal effect over single- and dual-scale roughness surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20rose%20petal%20effect%20over%20single-%20and%20dual-scale%20roughness%20surfaces&rft.jtitle=Nanotechnology&rft.au=Yeh,%20Kuan-Yu&rft.date=2014-08-29&rft.volume=25&rft.issue=34&rft.spage=345303&rft.epage=10&rft.pages=345303-10&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/25/34/345303&rft_dat=%3Cproquest_pasca%3E1629374680%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552370109&rft_id=info:pmid/25100802&rfr_iscdi=true