Integrated Histopathological and Urinary Metabonomic Investigation of the Pathogenesis of Microcystin-LR Toxicosis
Patterns of change of endogenous metabolites may closely reflect systemic and organ-specific toxic changes. The authors examined the metabolic effects of the cyanobacterial (blue-green algal) toxin microcystin-LR by 1H-nuclear magnetic resonance (NMR) analysis of urinary endogenous metabolites. Rats...
Gespeichert in:
Veröffentlicht in: | Veterinary pathology 2013-01, Vol.50 (1), p.159-171 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Veterinary pathology |
container_volume | 50 |
creator | Cantor, G. H. Beckonert, O. Bollard, M. E. Keun, H. C. Ebbels, T. M. D. Antti, H. Wijsman, J. A. Bible, R. H. Breau, A. P. Cockerell, G. L. Holmes, E. Lindon, J. C. Nicholson, J. K. |
description | Patterns of change of endogenous metabolites may closely reflect systemic and organ-specific toxic changes. The authors examined the metabolic effects of the cyanobacterial (blue-green algal) toxin microcystin-LR by 1H-nuclear magnetic resonance (NMR) analysis of urinary endogenous metabolites. Rats were treated with a single sublethal dose, either 20 or 80 µg/kg intraperitoneally, and sacrificed at 2 or 7 days post dosing. Changes in the high-dose, 2-day sacrifice group included centrilobular hepatic necrosis and congestion, accompanied in some animals by regeneration and neovascularization. By 7 days, animals had recovered, the necrotizing process had ended, and the centrilobular areas had been replaced by regenerative, usually hypertrophic hepatocytes. There was considerable interanimal variation in the histologic process and severity, which correlated with the changes in patterns of endogenous metabolites in the urine, thus providing additional validation of the biomarker and biochemical changes. Similarity of the shape of the metabolic trajectories suggests that the mechanisms of toxic effects and recovery are similar among the individual animals, albeit that the magnitude and timing are different for the individual animals. Initial decreases in urinary citrate, 2-oxoglutarate, succinate, and hippurate concentrations were accompanied by a temporary increase in betaine and taurine, then creatine from 24 to 48 hours. Further changes were an increase in guanidinoacetate, dimethylglycine, urocanic acid, and bile acids. As a tool, urine can be repeatedly and noninvasively sampled and metabonomics utilized to study the onset and recovery after toxicity, thus identifying time points of maximal effect. This can help to employ histopathological examination in a guided and effective fashion. |
doi_str_mv | 10.1177/0300985812443839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551620694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0300985812443839</sage_id><sourcerecordid>1551620694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-5eb560567c53a26efd960e7571a20237402bb0800bbf8d3baa8bd647ad7721d73</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7vniRHL9UkTZr2KKJusKHIdi5Jm3YZXTKTVNx_b8qmB8HTg_f9vo_3PgCuMbrDmPN7lCJU5CzHhNI0T4sTMMaM0oQQzE_BeJCTQR-BC-83CBFS5PwcjAhhjNCcjoGbmaBaJ4Kq4VT7YHcirG1nW12JDgpTw5XTRrg9XKggpDV2qys4M5_KB92KoK2BtoFhreDb4GyVUV77YbfQlbPVPnImmb_Dpf3SlY3aJThrROfV1XFOwOr5afk4TeavL7PHh3lSUUxCwpRkGWIZr1gqSKaausiQ4oxjQRBJOUVESpQjJGWT16kUIpd1RrmoOSe45ukE3B5yd85-9PHecqt9pbpOGGV7X2LGcEZQVtCIogMaL_beqabcOb2NX5cYlUPT5d-mo-XmmN7Lrap_DT_VRiA5AF60qtzY3pn47f-B30Muhy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551620694</pqid></control><display><type>article</type><title>Integrated Histopathological and Urinary Metabonomic Investigation of the Pathogenesis of Microcystin-LR Toxicosis</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Cantor, G. H. ; Beckonert, O. ; Bollard, M. E. ; Keun, H. C. ; Ebbels, T. M. D. ; Antti, H. ; Wijsman, J. A. ; Bible, R. H. ; Breau, A. P. ; Cockerell, G. L. ; Holmes, E. ; Lindon, J. C. ; Nicholson, J. K.</creator><creatorcontrib>Cantor, G. H. ; Beckonert, O. ; Bollard, M. E. ; Keun, H. C. ; Ebbels, T. M. D. ; Antti, H. ; Wijsman, J. A. ; Bible, R. H. ; Breau, A. P. ; Cockerell, G. L. ; Holmes, E. ; Lindon, J. C. ; Nicholson, J. K.</creatorcontrib><description>Patterns of change of endogenous metabolites may closely reflect systemic and organ-specific toxic changes. The authors examined the metabolic effects of the cyanobacterial (blue-green algal) toxin microcystin-LR by 1H-nuclear magnetic resonance (NMR) analysis of urinary endogenous metabolites. Rats were treated with a single sublethal dose, either 20 or 80 µg/kg intraperitoneally, and sacrificed at 2 or 7 days post dosing. Changes in the high-dose, 2-day sacrifice group included centrilobular hepatic necrosis and congestion, accompanied in some animals by regeneration and neovascularization. By 7 days, animals had recovered, the necrotizing process had ended, and the centrilobular areas had been replaced by regenerative, usually hypertrophic hepatocytes. There was considerable interanimal variation in the histologic process and severity, which correlated with the changes in patterns of endogenous metabolites in the urine, thus providing additional validation of the biomarker and biochemical changes. Similarity of the shape of the metabolic trajectories suggests that the mechanisms of toxic effects and recovery are similar among the individual animals, albeit that the magnitude and timing are different for the individual animals. Initial decreases in urinary citrate, 2-oxoglutarate, succinate, and hippurate concentrations were accompanied by a temporary increase in betaine and taurine, then creatine from 24 to 48 hours. Further changes were an increase in guanidinoacetate, dimethylglycine, urocanic acid, and bile acids. As a tool, urine can be repeatedly and noninvasively sampled and metabonomics utilized to study the onset and recovery after toxicity, thus identifying time points of maximal effect. This can help to employ histopathological examination in a guided and effective fashion.</description><identifier>ISSN: 0300-9858</identifier><identifier>EISSN: 1544-2217</identifier><identifier>DOI: 10.1177/0300985812443839</identifier><identifier>PMID: 22552484</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Animals ; Bile Acids and Salts - urine ; Enzyme Inhibitors - metabolism ; Enzyme Inhibitors - toxicity ; Injections, Intraperitoneal ; Kidney - drug effects ; Kidney - pathology ; Liver - drug effects ; Liver - pathology ; Magnetic Resonance Spectroscopy ; Male ; Metabolomics - methods ; Microcystins - metabolism ; Microcystins - toxicity ; Microcystis - chemistry ; Rats ; Rats, Sprague-Dawley ; Time Factors ; Urocanic Acid - urine</subject><ispartof>Veterinary pathology, 2013-01, Vol.50 (1), p.159-171</ispartof><rights>The Author(s) 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-5eb560567c53a26efd960e7571a20237402bb0800bbf8d3baa8bd647ad7721d73</citedby><cites>FETCH-LOGICAL-c412t-5eb560567c53a26efd960e7571a20237402bb0800bbf8d3baa8bd647ad7721d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0300985812443839$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0300985812443839$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22552484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantor, G. H.</creatorcontrib><creatorcontrib>Beckonert, O.</creatorcontrib><creatorcontrib>Bollard, M. E.</creatorcontrib><creatorcontrib>Keun, H. C.</creatorcontrib><creatorcontrib>Ebbels, T. M. D.</creatorcontrib><creatorcontrib>Antti, H.</creatorcontrib><creatorcontrib>Wijsman, J. A.</creatorcontrib><creatorcontrib>Bible, R. H.</creatorcontrib><creatorcontrib>Breau, A. P.</creatorcontrib><creatorcontrib>Cockerell, G. L.</creatorcontrib><creatorcontrib>Holmes, E.</creatorcontrib><creatorcontrib>Lindon, J. C.</creatorcontrib><creatorcontrib>Nicholson, J. K.</creatorcontrib><title>Integrated Histopathological and Urinary Metabonomic Investigation of the Pathogenesis of Microcystin-LR Toxicosis</title><title>Veterinary pathology</title><addtitle>Vet Pathol</addtitle><description>Patterns of change of endogenous metabolites may closely reflect systemic and organ-specific toxic changes. The authors examined the metabolic effects of the cyanobacterial (blue-green algal) toxin microcystin-LR by 1H-nuclear magnetic resonance (NMR) analysis of urinary endogenous metabolites. Rats were treated with a single sublethal dose, either 20 or 80 µg/kg intraperitoneally, and sacrificed at 2 or 7 days post dosing. Changes in the high-dose, 2-day sacrifice group included centrilobular hepatic necrosis and congestion, accompanied in some animals by regeneration and neovascularization. By 7 days, animals had recovered, the necrotizing process had ended, and the centrilobular areas had been replaced by regenerative, usually hypertrophic hepatocytes. There was considerable interanimal variation in the histologic process and severity, which correlated with the changes in patterns of endogenous metabolites in the urine, thus providing additional validation of the biomarker and biochemical changes. Similarity of the shape of the metabolic trajectories suggests that the mechanisms of toxic effects and recovery are similar among the individual animals, albeit that the magnitude and timing are different for the individual animals. Initial decreases in urinary citrate, 2-oxoglutarate, succinate, and hippurate concentrations were accompanied by a temporary increase in betaine and taurine, then creatine from 24 to 48 hours. Further changes were an increase in guanidinoacetate, dimethylglycine, urocanic acid, and bile acids. As a tool, urine can be repeatedly and noninvasively sampled and metabonomics utilized to study the onset and recovery after toxicity, thus identifying time points of maximal effect. This can help to employ histopathological examination in a guided and effective fashion.</description><subject>Animals</subject><subject>Bile Acids and Salts - urine</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Enzyme Inhibitors - toxicity</subject><subject>Injections, Intraperitoneal</subject><subject>Kidney - drug effects</subject><subject>Kidney - pathology</subject><subject>Liver - drug effects</subject><subject>Liver - pathology</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Metabolomics - methods</subject><subject>Microcystins - metabolism</subject><subject>Microcystins - toxicity</subject><subject>Microcystis - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><subject>Urocanic Acid - urine</subject><issn>0300-9858</issn><issn>1544-2217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFLwzAUxoMobk7vniRHL9UkTZr2KKJusKHIdi5Jm3YZXTKTVNx_b8qmB8HTg_f9vo_3PgCuMbrDmPN7lCJU5CzHhNI0T4sTMMaM0oQQzE_BeJCTQR-BC-83CBFS5PwcjAhhjNCcjoGbmaBaJ4Kq4VT7YHcirG1nW12JDgpTw5XTRrg9XKggpDV2qys4M5_KB92KoK2BtoFhreDb4GyVUV77YbfQlbPVPnImmb_Dpf3SlY3aJThrROfV1XFOwOr5afk4TeavL7PHh3lSUUxCwpRkGWIZr1gqSKaausiQ4oxjQRBJOUVESpQjJGWT16kUIpd1RrmoOSe45ukE3B5yd85-9PHecqt9pbpOGGV7X2LGcEZQVtCIogMaL_beqabcOb2NX5cYlUPT5d-mo-XmmN7Lrap_DT_VRiA5AF60qtzY3pn47f-B30Muhy8</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Cantor, G. H.</creator><creator>Beckonert, O.</creator><creator>Bollard, M. E.</creator><creator>Keun, H. C.</creator><creator>Ebbels, T. M. D.</creator><creator>Antti, H.</creator><creator>Wijsman, J. A.</creator><creator>Bible, R. H.</creator><creator>Breau, A. P.</creator><creator>Cockerell, G. L.</creator><creator>Holmes, E.</creator><creator>Lindon, J. C.</creator><creator>Nicholson, J. K.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>201301</creationdate><title>Integrated Histopathological and Urinary Metabonomic Investigation of the Pathogenesis of Microcystin-LR Toxicosis</title><author>Cantor, G. H. ; Beckonert, O. ; Bollard, M. E. ; Keun, H. C. ; Ebbels, T. M. D. ; Antti, H. ; Wijsman, J. A. ; Bible, R. H. ; Breau, A. P. ; Cockerell, G. L. ; Holmes, E. ; Lindon, J. C. ; Nicholson, J. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-5eb560567c53a26efd960e7571a20237402bb0800bbf8d3baa8bd647ad7721d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bile Acids and Salts - urine</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Enzyme Inhibitors - toxicity</topic><topic>Injections, Intraperitoneal</topic><topic>Kidney - drug effects</topic><topic>Kidney - pathology</topic><topic>Liver - drug effects</topic><topic>Liver - pathology</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Metabolomics - methods</topic><topic>Microcystins - metabolism</topic><topic>Microcystins - toxicity</topic><topic>Microcystis - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><topic>Urocanic Acid - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantor, G. H.</creatorcontrib><creatorcontrib>Beckonert, O.</creatorcontrib><creatorcontrib>Bollard, M. E.</creatorcontrib><creatorcontrib>Keun, H. C.</creatorcontrib><creatorcontrib>Ebbels, T. M. D.</creatorcontrib><creatorcontrib>Antti, H.</creatorcontrib><creatorcontrib>Wijsman, J. A.</creatorcontrib><creatorcontrib>Bible, R. H.</creatorcontrib><creatorcontrib>Breau, A. P.</creatorcontrib><creatorcontrib>Cockerell, G. L.</creatorcontrib><creatorcontrib>Holmes, E.</creatorcontrib><creatorcontrib>Lindon, J. C.</creatorcontrib><creatorcontrib>Nicholson, J. K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Veterinary pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cantor, G. H.</au><au>Beckonert, O.</au><au>Bollard, M. E.</au><au>Keun, H. C.</au><au>Ebbels, T. M. D.</au><au>Antti, H.</au><au>Wijsman, J. A.</au><au>Bible, R. H.</au><au>Breau, A. P.</au><au>Cockerell, G. L.</au><au>Holmes, E.</au><au>Lindon, J. C.</au><au>Nicholson, J. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Histopathological and Urinary Metabonomic Investigation of the Pathogenesis of Microcystin-LR Toxicosis</atitle><jtitle>Veterinary pathology</jtitle><addtitle>Vet Pathol</addtitle><date>2013-01</date><risdate>2013</risdate><volume>50</volume><issue>1</issue><spage>159</spage><epage>171</epage><pages>159-171</pages><issn>0300-9858</issn><eissn>1544-2217</eissn><abstract>Patterns of change of endogenous metabolites may closely reflect systemic and organ-specific toxic changes. The authors examined the metabolic effects of the cyanobacterial (blue-green algal) toxin microcystin-LR by 1H-nuclear magnetic resonance (NMR) analysis of urinary endogenous metabolites. Rats were treated with a single sublethal dose, either 20 or 80 µg/kg intraperitoneally, and sacrificed at 2 or 7 days post dosing. Changes in the high-dose, 2-day sacrifice group included centrilobular hepatic necrosis and congestion, accompanied in some animals by regeneration and neovascularization. By 7 days, animals had recovered, the necrotizing process had ended, and the centrilobular areas had been replaced by regenerative, usually hypertrophic hepatocytes. There was considerable interanimal variation in the histologic process and severity, which correlated with the changes in patterns of endogenous metabolites in the urine, thus providing additional validation of the biomarker and biochemical changes. Similarity of the shape of the metabolic trajectories suggests that the mechanisms of toxic effects and recovery are similar among the individual animals, albeit that the magnitude and timing are different for the individual animals. Initial decreases in urinary citrate, 2-oxoglutarate, succinate, and hippurate concentrations were accompanied by a temporary increase in betaine and taurine, then creatine from 24 to 48 hours. Further changes were an increase in guanidinoacetate, dimethylglycine, urocanic acid, and bile acids. As a tool, urine can be repeatedly and noninvasively sampled and metabonomics utilized to study the onset and recovery after toxicity, thus identifying time points of maximal effect. This can help to employ histopathological examination in a guided and effective fashion.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>22552484</pmid><doi>10.1177/0300985812443839</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-9858 |
ispartof | Veterinary pathology, 2013-01, Vol.50 (1), p.159-171 |
issn | 0300-9858 1544-2217 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551620694 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Animals Bile Acids and Salts - urine Enzyme Inhibitors - metabolism Enzyme Inhibitors - toxicity Injections, Intraperitoneal Kidney - drug effects Kidney - pathology Liver - drug effects Liver - pathology Magnetic Resonance Spectroscopy Male Metabolomics - methods Microcystins - metabolism Microcystins - toxicity Microcystis - chemistry Rats Rats, Sprague-Dawley Time Factors Urocanic Acid - urine |
title | Integrated Histopathological and Urinary Metabonomic Investigation of the Pathogenesis of Microcystin-LR Toxicosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Histopathological%20and%20Urinary%20Metabonomic%20Investigation%20of%20the%20Pathogenesis%20of%20Microcystin-LR%20Toxicosis&rft.jtitle=Veterinary%20pathology&rft.au=Cantor,%20G.%20H.&rft.date=2013-01&rft.volume=50&rft.issue=1&rft.spage=159&rft.epage=171&rft.pages=159-171&rft.issn=0300-9858&rft.eissn=1544-2217&rft_id=info:doi/10.1177/0300985812443839&rft_dat=%3Cproquest_cross%3E1551620694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551620694&rft_id=info:pmid/22552484&rft_sage_id=10.1177_0300985812443839&rfr_iscdi=true |