Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps

•The efficiencies of TiO2-coated lamps were investigated for microbe disinfections.•Binder type affects the coating strength and TiO2 distribution characteristics.•Binder concentration affects the viscosity and the retention of TiO2 on the lamp.•93–96% bacterial disinfections could obtain from coate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2014-09, Vol.138, p.160-171
Hauptverfasser: Sungkajuntranon, Krisaneeya, Sribenjalux, Pipat, Supothina, Sitthisuntorn, Chuaybamroong, Paradee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 160
container_title Journal of photochemistry and photobiology. B, Biology
container_volume 138
creator Sungkajuntranon, Krisaneeya
Sribenjalux, Pipat
Supothina, Sitthisuntorn
Chuaybamroong, Paradee
description •The efficiencies of TiO2-coated lamps were investigated for microbe disinfections.•Binder type affects the coating strength and TiO2 distribution characteristics.•Binder concentration affects the viscosity and the retention of TiO2 on the lamp.•93–96% bacterial disinfections could obtain from coated black-light lamps.•85–88% bacterial disinfections could achieve from white-light lamps. 5% Degussa P25 TiO2 was spray-coated onto black-light and white-light fluorescent lamps, using five different binders, namely DURAMAX B-1000, DURAMAX D-3005, silane-69, and two polyethylene glycols with molecular weight 1000 (PEG-1000) and 700 (PEG-700). The coated lamps were tested with Staphylococcus epidermidis, Escherichia coli, spores of Bacillus subtilis and spores of Aspergillus niger. It was found that 0.5% B-1000 and 1% PEG-1000 gave the highest inactivation rates: 93–96% from coated black-light lamps and 85–88% from coated white-light lamps for bacteria. In the case of spores, 70–72% and 55–57% inactivation rates were recorded from coated black-light and coated white-light lamps, respectively. The effects of UVA irradiance and face velocity were also examined. Significant improvement was observed from coated white-light lamps when the UVA irradiance increased. High face velocity adversely affected microorganism inactivation.
doi_str_mv 10.1016/j.jphotobiol.2014.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551327950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1011134414001870</els_id><sourcerecordid>1551327950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-f775afd8cb802d521c05a16fb7ba2fc8294cc5cf4946db77e0aef38894762a693</originalsourceid><addsrcrecordid>eNqFkMtOxSAQQInR-P4Fw9JNK1Ao7VKNr8TEja4JpaBz08IVqIl_L3p9LJ3NzOLM6yCEKakpoe3Zql6tX0IOA4SpZoTymoia0H4L7dNONhVrO7ZdakJpRRvO99BBSitSQrRyF-0x3jeSN2IfjVfOWZNxcHgAP9qYcPBYQxxC9BbPYGII8Vl7SDMGr02GN52hMEsC_4wf4YHhr1uMznp6z2Cwm5YQbTLWZzzpeZ2O0I7TU7LH3_kQPV1fPV7eVvcPN3eX5_eVaQjPlZNSaDd2ZugIGwWjhghNWzfIQTNnOtZzY4RxvOftOEhpibau6bqey5bptm8O0elm7jqG18WmrGYoZ0yT9jYsSVEhaMNkL0hBuw1a_kspWqfWEWYd3xUl6tOxWqk_x-rTsSJCFcel9eR7yzLMdvxt_JFagIsNYMuvb2CjSgasN3aEWFyrMcD_Wz4AZcKVJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551327950</pqid></control><display><type>article</type><title>Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sungkajuntranon, Krisaneeya ; Sribenjalux, Pipat ; Supothina, Sitthisuntorn ; Chuaybamroong, Paradee</creator><creatorcontrib>Sungkajuntranon, Krisaneeya ; Sribenjalux, Pipat ; Supothina, Sitthisuntorn ; Chuaybamroong, Paradee</creatorcontrib><description>•The efficiencies of TiO2-coated lamps were investigated for microbe disinfections.•Binder type affects the coating strength and TiO2 distribution characteristics.•Binder concentration affects the viscosity and the retention of TiO2 on the lamp.•93–96% bacterial disinfections could obtain from coated black-light lamps.•85–88% bacterial disinfections could achieve from white-light lamps. 5% Degussa P25 TiO2 was spray-coated onto black-light and white-light fluorescent lamps, using five different binders, namely DURAMAX B-1000, DURAMAX D-3005, silane-69, and two polyethylene glycols with molecular weight 1000 (PEG-1000) and 700 (PEG-700). The coated lamps were tested with Staphylococcus epidermidis, Escherichia coli, spores of Bacillus subtilis and spores of Aspergillus niger. It was found that 0.5% B-1000 and 1% PEG-1000 gave the highest inactivation rates: 93–96% from coated black-light lamps and 85–88% from coated white-light lamps for bacteria. In the case of spores, 70–72% and 55–57% inactivation rates were recorded from coated black-light and coated white-light lamps, respectively. The effects of UVA irradiance and face velocity were also examined. Significant improvement was observed from coated white-light lamps when the UVA irradiance increased. High face velocity adversely affected microorganism inactivation.</description><identifier>ISSN: 1011-1344</identifier><identifier>EISSN: 1873-2682</identifier><identifier>DOI: 10.1016/j.jphotobiol.2014.05.019</identifier><identifier>PMID: 24937435</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Acrylic polymer ; Air Microbiology ; Aspergillus niger - physiology ; Bacillus subtilis - physiology ; Bacteria - radiation effects ; Binder ; Catalysis ; Dispersant ; Escherichia coli - radiation effects ; Fungi - radiation effects ; Light ; Microorganism removal ; Polyethylene Glycols - chemistry ; Silanes - chemistry ; Spores, Bacterial - radiation effects ; Spores, Fungal - radiation effects ; Spray-coating ; Staphylococcus epidermidis - radiation effects ; TiO2-coated lamp ; Titanium - chemistry ; Ultraviolet Rays</subject><ispartof>Journal of photochemistry and photobiology. B, Biology, 2014-09, Vol.138, p.160-171</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-f775afd8cb802d521c05a16fb7ba2fc8294cc5cf4946db77e0aef38894762a693</citedby><cites>FETCH-LOGICAL-c304t-f775afd8cb802d521c05a16fb7ba2fc8294cc5cf4946db77e0aef38894762a693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jphotobiol.2014.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24937435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sungkajuntranon, Krisaneeya</creatorcontrib><creatorcontrib>Sribenjalux, Pipat</creatorcontrib><creatorcontrib>Supothina, Sitthisuntorn</creatorcontrib><creatorcontrib>Chuaybamroong, Paradee</creatorcontrib><title>Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps</title><title>Journal of photochemistry and photobiology. B, Biology</title><addtitle>J Photochem Photobiol B</addtitle><description>•The efficiencies of TiO2-coated lamps were investigated for microbe disinfections.•Binder type affects the coating strength and TiO2 distribution characteristics.•Binder concentration affects the viscosity and the retention of TiO2 on the lamp.•93–96% bacterial disinfections could obtain from coated black-light lamps.•85–88% bacterial disinfections could achieve from white-light lamps. 5% Degussa P25 TiO2 was spray-coated onto black-light and white-light fluorescent lamps, using five different binders, namely DURAMAX B-1000, DURAMAX D-3005, silane-69, and two polyethylene glycols with molecular weight 1000 (PEG-1000) and 700 (PEG-700). The coated lamps were tested with Staphylococcus epidermidis, Escherichia coli, spores of Bacillus subtilis and spores of Aspergillus niger. It was found that 0.5% B-1000 and 1% PEG-1000 gave the highest inactivation rates: 93–96% from coated black-light lamps and 85–88% from coated white-light lamps for bacteria. In the case of spores, 70–72% and 55–57% inactivation rates were recorded from coated black-light and coated white-light lamps, respectively. The effects of UVA irradiance and face velocity were also examined. Significant improvement was observed from coated white-light lamps when the UVA irradiance increased. High face velocity adversely affected microorganism inactivation.</description><subject>Acrylic polymer</subject><subject>Air Microbiology</subject><subject>Aspergillus niger - physiology</subject><subject>Bacillus subtilis - physiology</subject><subject>Bacteria - radiation effects</subject><subject>Binder</subject><subject>Catalysis</subject><subject>Dispersant</subject><subject>Escherichia coli - radiation effects</subject><subject>Fungi - radiation effects</subject><subject>Light</subject><subject>Microorganism removal</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Silanes - chemistry</subject><subject>Spores, Bacterial - radiation effects</subject><subject>Spores, Fungal - radiation effects</subject><subject>Spray-coating</subject><subject>Staphylococcus epidermidis - radiation effects</subject><subject>TiO2-coated lamp</subject><subject>Titanium - chemistry</subject><subject>Ultraviolet Rays</subject><issn>1011-1344</issn><issn>1873-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOxSAQQInR-P4Fw9JNK1Ao7VKNr8TEja4JpaBz08IVqIl_L3p9LJ3NzOLM6yCEKakpoe3Zql6tX0IOA4SpZoTymoia0H4L7dNONhVrO7ZdakJpRRvO99BBSitSQrRyF-0x3jeSN2IfjVfOWZNxcHgAP9qYcPBYQxxC9BbPYGII8Vl7SDMGr02GN52hMEsC_4wf4YHhr1uMznp6z2Cwm5YQbTLWZzzpeZ2O0I7TU7LH3_kQPV1fPV7eVvcPN3eX5_eVaQjPlZNSaDd2ZugIGwWjhghNWzfIQTNnOtZzY4RxvOftOEhpibau6bqey5bptm8O0elm7jqG18WmrGYoZ0yT9jYsSVEhaMNkL0hBuw1a_kspWqfWEWYd3xUl6tOxWqk_x-rTsSJCFcel9eR7yzLMdvxt_JFagIsNYMuvb2CjSgasN3aEWFyrMcD_Wz4AZcKVJQ</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Sungkajuntranon, Krisaneeya</creator><creator>Sribenjalux, Pipat</creator><creator>Supothina, Sitthisuntorn</creator><creator>Chuaybamroong, Paradee</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140905</creationdate><title>Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps</title><author>Sungkajuntranon, Krisaneeya ; Sribenjalux, Pipat ; Supothina, Sitthisuntorn ; Chuaybamroong, Paradee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-f775afd8cb802d521c05a16fb7ba2fc8294cc5cf4946db77e0aef38894762a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acrylic polymer</topic><topic>Air Microbiology</topic><topic>Aspergillus niger - physiology</topic><topic>Bacillus subtilis - physiology</topic><topic>Bacteria - radiation effects</topic><topic>Binder</topic><topic>Catalysis</topic><topic>Dispersant</topic><topic>Escherichia coli - radiation effects</topic><topic>Fungi - radiation effects</topic><topic>Light</topic><topic>Microorganism removal</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Silanes - chemistry</topic><topic>Spores, Bacterial - radiation effects</topic><topic>Spores, Fungal - radiation effects</topic><topic>Spray-coating</topic><topic>Staphylococcus epidermidis - radiation effects</topic><topic>TiO2-coated lamp</topic><topic>Titanium - chemistry</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sungkajuntranon, Krisaneeya</creatorcontrib><creatorcontrib>Sribenjalux, Pipat</creatorcontrib><creatorcontrib>Supothina, Sitthisuntorn</creatorcontrib><creatorcontrib>Chuaybamroong, Paradee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sungkajuntranon, Krisaneeya</au><au>Sribenjalux, Pipat</au><au>Supothina, Sitthisuntorn</au><au>Chuaybamroong, Paradee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps</atitle><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle><addtitle>J Photochem Photobiol B</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>138</volume><spage>160</spage><epage>171</epage><pages>160-171</pages><issn>1011-1344</issn><eissn>1873-2682</eissn><abstract>•The efficiencies of TiO2-coated lamps were investigated for microbe disinfections.•Binder type affects the coating strength and TiO2 distribution characteristics.•Binder concentration affects the viscosity and the retention of TiO2 on the lamp.•93–96% bacterial disinfections could obtain from coated black-light lamps.•85–88% bacterial disinfections could achieve from white-light lamps. 5% Degussa P25 TiO2 was spray-coated onto black-light and white-light fluorescent lamps, using five different binders, namely DURAMAX B-1000, DURAMAX D-3005, silane-69, and two polyethylene glycols with molecular weight 1000 (PEG-1000) and 700 (PEG-700). The coated lamps were tested with Staphylococcus epidermidis, Escherichia coli, spores of Bacillus subtilis and spores of Aspergillus niger. It was found that 0.5% B-1000 and 1% PEG-1000 gave the highest inactivation rates: 93–96% from coated black-light lamps and 85–88% from coated white-light lamps for bacteria. In the case of spores, 70–72% and 55–57% inactivation rates were recorded from coated black-light and coated white-light lamps, respectively. The effects of UVA irradiance and face velocity were also examined. Significant improvement was observed from coated white-light lamps when the UVA irradiance increased. High face velocity adversely affected microorganism inactivation.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>24937435</pmid><doi>10.1016/j.jphotobiol.2014.05.019</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-1344
ispartof Journal of photochemistry and photobiology. B, Biology, 2014-09, Vol.138, p.160-171
issn 1011-1344
1873-2682
language eng
recordid cdi_proquest_miscellaneous_1551327950
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acrylic polymer
Air Microbiology
Aspergillus niger - physiology
Bacillus subtilis - physiology
Bacteria - radiation effects
Binder
Catalysis
Dispersant
Escherichia coli - radiation effects
Fungi - radiation effects
Light
Microorganism removal
Polyethylene Glycols - chemistry
Silanes - chemistry
Spores, Bacterial - radiation effects
Spores, Fungal - radiation effects
Spray-coating
Staphylococcus epidermidis - radiation effects
TiO2-coated lamp
Titanium - chemistry
Ultraviolet Rays
title Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20binders%20on%20airborne%20microorganism%20inactivation%20using%20TiO2%20photocatalytic%20fluorescent%20lamps&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20B,%20Biology&rft.au=Sungkajuntranon,%20Krisaneeya&rft.date=2014-09-05&rft.volume=138&rft.spage=160&rft.epage=171&rft.pages=160-171&rft.issn=1011-1344&rft.eissn=1873-2682&rft_id=info:doi/10.1016/j.jphotobiol.2014.05.019&rft_dat=%3Cproquest_cross%3E1551327950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551327950&rft_id=info:pmid/24937435&rft_els_id=S1011134414001870&rfr_iscdi=true