Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models

Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2014-01, Vol.93 (18), p.22-25
Hauptverfasser: Jangid, Chandra Shekhar, Vishwakarma, Santosh K, Lakhtaria, Kamaljit I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 18
container_start_page 22
container_title International journal of computer applications
container_volume 93
creator Jangid, Chandra Shekhar
Vishwakarma, Santosh K
Lakhtaria, Kamaljit I
description Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.
doi_str_mv 10.5120/16435-6136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551118362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3316722421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1326-1cdb4ad56786367531ea46dcc76104612f3220a89abeee9cbc78fec1a7deaa33</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsNRe_AULXkSIZnazu8mxtI0WKkrtPUw2E5qSdutuqvjvTa0HcS5vDh-Px8fYNcT3CkT8ADqRKtIg9RkbxJlRUZqm5vzPf8lGIWzi_mQmdJYMWD6uorWzfEmdb-gDW-52PJ8vZ3yKHfI36vhn0635Ko_m05zjruKv3pVYNm0TusbyZ1dRG67YRY1toNFvDtkqn60mT9Hi5XE-GS8iC1LoCGxVJlgpbVIttVESCBNdWWs0xIkGUUshYkwzLIkos6U1aU0W0FSEKOWQ3Z5q9969Hyh0xbYJltoWd-QOoQClACCVWvTozT904w5-14_rKZEBqARMT92dKOtdCJ7qYu-bLfqvAuLiKLX4kVocpcpv57pliw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529115417</pqid></control><display><type>article</type><title>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jangid, Chandra Shekhar ; Vishwakarma, Santosh K ; Lakhtaria, Kamaljit I</creator><creatorcontrib>Jangid, Chandra Shekhar ; Vishwakarma, Santosh K ; Lakhtaria, Kamaljit I</creatorcontrib><description>Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/16435-6136</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Fires ; Information retrieval ; Mathematical models ; News ; Probabilistic methods ; Probability theory ; Retrieval ; Search engines</subject><ispartof>International journal of computer applications, 2014-01, Vol.93 (18), p.22-25</ispartof><rights>Copyright Foundation of Computer Science 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jangid, Chandra Shekhar</creatorcontrib><creatorcontrib>Vishwakarma, Santosh K</creatorcontrib><creatorcontrib>Lakhtaria, Kamaljit I</creatorcontrib><title>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</title><title>International journal of computer applications</title><description>Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.</description><subject>Fires</subject><subject>Information retrieval</subject><subject>Mathematical models</subject><subject>News</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Retrieval</subject><subject>Search engines</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLw0AQhRdRsNRe_AULXkSIZnazu8mxtI0WKkrtPUw2E5qSdutuqvjvTa0HcS5vDh-Px8fYNcT3CkT8ADqRKtIg9RkbxJlRUZqm5vzPf8lGIWzi_mQmdJYMWD6uorWzfEmdb-gDW-52PJ8vZ3yKHfI36vhn0635Ko_m05zjruKv3pVYNm0TusbyZ1dRG67YRY1toNFvDtkqn60mT9Hi5XE-GS8iC1LoCGxVJlgpbVIttVESCBNdWWs0xIkGUUshYkwzLIkos6U1aU0W0FSEKOWQ3Z5q9969Hyh0xbYJltoWd-QOoQClACCVWvTozT904w5-14_rKZEBqARMT92dKOtdCJ7qYu-bLfqvAuLiKLX4kVocpcpv57pliw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Jangid, Chandra Shekhar</creator><creator>Vishwakarma, Santosh K</creator><creator>Lakhtaria, Kamaljit I</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</title><author>Jangid, Chandra Shekhar ; Vishwakarma, Santosh K ; Lakhtaria, Kamaljit I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1326-1cdb4ad56786367531ea46dcc76104612f3220a89abeee9cbc78fec1a7deaa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fires</topic><topic>Information retrieval</topic><topic>Mathematical models</topic><topic>News</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Retrieval</topic><topic>Search engines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jangid, Chandra Shekhar</creatorcontrib><creatorcontrib>Vishwakarma, Santosh K</creatorcontrib><creatorcontrib>Lakhtaria, Kamaljit I</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jangid, Chandra Shekhar</au><au>Vishwakarma, Santosh K</au><au>Lakhtaria, Kamaljit I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</atitle><jtitle>International journal of computer applications</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>93</volume><issue>18</issue><spage>22</spage><epage>25</epage><pages>22-25</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/16435-6136</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2014-01, Vol.93 (18), p.22-25
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1551118362
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Fires
Information retrieval
Mathematical models
News
Probabilistic methods
Probability theory
Retrieval
Search engines
title Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ad-hoc%20Retrieval%20on%20FIRE%20Data%20Set%20with%20TF-IDF%20and%20Probabilistic%20Models&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Jangid,%20Chandra%20Shekhar&rft.date=2014-01-01&rft.volume=93&rft.issue=18&rft.spage=22&rft.epage=25&rft.pages=22-25&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/16435-6136&rft_dat=%3Cproquest_cross%3E3316722421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529115417&rft_id=info:pmid/&rfr_iscdi=true