Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models
Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2014-01, Vol.93 (18), p.22-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 18 |
container_start_page | 22 |
container_title | International journal of computer applications |
container_volume | 93 |
creator | Jangid, Chandra Shekhar Vishwakarma, Santosh K Lakhtaria, Kamaljit I |
description | Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset. |
doi_str_mv | 10.5120/16435-6136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551118362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3316722421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1326-1cdb4ad56786367531ea46dcc76104612f3220a89abeee9cbc78fec1a7deaa33</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsNRe_AULXkSIZnazu8mxtI0WKkrtPUw2E5qSdutuqvjvTa0HcS5vDh-Px8fYNcT3CkT8ADqRKtIg9RkbxJlRUZqm5vzPf8lGIWzi_mQmdJYMWD6uorWzfEmdb-gDW-52PJ8vZ3yKHfI36vhn0635Ko_m05zjruKv3pVYNm0TusbyZ1dRG67YRY1toNFvDtkqn60mT9Hi5XE-GS8iC1LoCGxVJlgpbVIttVESCBNdWWs0xIkGUUshYkwzLIkos6U1aU0W0FSEKOWQ3Z5q9969Hyh0xbYJltoWd-QOoQClACCVWvTozT904w5-14_rKZEBqARMT92dKOtdCJ7qYu-bLfqvAuLiKLX4kVocpcpv57pliw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529115417</pqid></control><display><type>article</type><title>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jangid, Chandra Shekhar ; Vishwakarma, Santosh K ; Lakhtaria, Kamaljit I</creator><creatorcontrib>Jangid, Chandra Shekhar ; Vishwakarma, Santosh K ; Lakhtaria, Kamaljit I</creatorcontrib><description>Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/16435-6136</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Fires ; Information retrieval ; Mathematical models ; News ; Probabilistic methods ; Probability theory ; Retrieval ; Search engines</subject><ispartof>International journal of computer applications, 2014-01, Vol.93 (18), p.22-25</ispartof><rights>Copyright Foundation of Computer Science 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jangid, Chandra Shekhar</creatorcontrib><creatorcontrib>Vishwakarma, Santosh K</creatorcontrib><creatorcontrib>Lakhtaria, Kamaljit I</creatorcontrib><title>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</title><title>International journal of computer applications</title><description>Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.</description><subject>Fires</subject><subject>Information retrieval</subject><subject>Mathematical models</subject><subject>News</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Retrieval</subject><subject>Search engines</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLw0AQhRdRsNRe_AULXkSIZnazu8mxtI0WKkrtPUw2E5qSdutuqvjvTa0HcS5vDh-Px8fYNcT3CkT8ADqRKtIg9RkbxJlRUZqm5vzPf8lGIWzi_mQmdJYMWD6uorWzfEmdb-gDW-52PJ8vZ3yKHfI36vhn0635Ko_m05zjruKv3pVYNm0TusbyZ1dRG67YRY1toNFvDtkqn60mT9Hi5XE-GS8iC1LoCGxVJlgpbVIttVESCBNdWWs0xIkGUUshYkwzLIkos6U1aU0W0FSEKOWQ3Z5q9969Hyh0xbYJltoWd-QOoQClACCVWvTozT904w5-14_rKZEBqARMT92dKOtdCJ7qYu-bLfqvAuLiKLX4kVocpcpv57pliw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Jangid, Chandra Shekhar</creator><creator>Vishwakarma, Santosh K</creator><creator>Lakhtaria, Kamaljit I</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</title><author>Jangid, Chandra Shekhar ; Vishwakarma, Santosh K ; Lakhtaria, Kamaljit I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1326-1cdb4ad56786367531ea46dcc76104612f3220a89abeee9cbc78fec1a7deaa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fires</topic><topic>Information retrieval</topic><topic>Mathematical models</topic><topic>News</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Retrieval</topic><topic>Search engines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jangid, Chandra Shekhar</creatorcontrib><creatorcontrib>Vishwakarma, Santosh K</creatorcontrib><creatorcontrib>Lakhtaria, Kamaljit I</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jangid, Chandra Shekhar</au><au>Vishwakarma, Santosh K</au><au>Lakhtaria, Kamaljit I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models</atitle><jtitle>International journal of computer applications</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>93</volume><issue>18</issue><spage>22</spage><epage>25</epage><pages>22-25</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Information Retrieval is finding documents of unstructured nature which should satisfy user's information needs. There exist various models for weighting terms of corpus documents and query terms. This work is carried out to analyze and evaluate the retrieval effectiveness of various IR models while using the new data set of FIRE 2011. The experiments were performed with tf-idf and its variants along with probabilistic models. For all experiments and evaluation the open search engine, Terrier 3. 5 was used. Our result shows that tf-idf model gives the highest precision values with the news corpus dataset.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/16435-6136</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2014-01, Vol.93 (18), p.22-25 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551118362 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Fires Information retrieval Mathematical models News Probabilistic methods Probability theory Retrieval Search engines |
title | Ad-hoc Retrieval on FIRE Data Set with TF-IDF and Probabilistic Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ad-hoc%20Retrieval%20on%20FIRE%20Data%20Set%20with%20TF-IDF%20and%20Probabilistic%20Models&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Jangid,%20Chandra%20Shekhar&rft.date=2014-01-01&rft.volume=93&rft.issue=18&rft.spage=22&rft.epage=25&rft.pages=22-25&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/16435-6136&rft_dat=%3Cproquest_cross%3E3316722421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529115417&rft_id=info:pmid/&rfr_iscdi=true |