High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes

The current‐carrying capacity (CCC), or ampacity, of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density (FCD) and continuous current rating (CCR) values. It is shown, both experimentally and theoretically, that the CCC of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-06, Vol.24 (21), p.3241-3249
Hauptverfasser: Wang, Xuan, Behabtu, Natnael, Young, Colin C., Tsentalovich, Dmitri E., Pasquali, Matteo, Kono, Junichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3249
container_issue 21
container_start_page 3241
container_title Advanced functional materials
container_volume 24
creator Wang, Xuan
Behabtu, Natnael
Young, Colin C.
Tsentalovich, Dmitri E.
Pasquali, Matteo
Kono, Junichiro
description The current‐carrying capacity (CCC), or ampacity, of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density (FCD) and continuous current rating (CCR) values. It is shown, both experimentally and theoretically, that the CCC of these fibers is determined by the balance between current‐induced Joule heating and heat exchange with the surroundings. The measured FCD values of the fibers range from 107 to 109 A m−2 and are generally higher than the previously reported values for aligned buckypapers, carbon fibers, and CNT fibers. To the authors’ knowledge, this is the first time the CCR for a CNT fiber has been reported. The specific CCC value (i.e., normalized by the linear mass density) of these CNT fibers are demonstrated to be higher than those of copper. The current‐carrying capacity (CCC) of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density and continuous current rating values. The specific CCC (i.e., normalized by the linear mass density) of our CNT fibers is demonstrated to be higher than that of copper, making those fibers promising for power transmission.
doi_str_mv 10.1002/adfm.201303865
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551110286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913118756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4545-c46793b3b797796dc8caf0bd75eff7a3e8ebce40b67c501f355fd99d98606a743</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhosoOKdXzwUvXjqTpknaY6nuh25zyERvIU2T2a1rZtIy-9_bURnixUvyQp4nfN_rONcQDCAA_h3P1HbgA4gACgk-cXqQQOIh4Ienxwzfz50La9cAQEpR0HMm43z14cXbHRd51bgLvZfGTXhaSOtq5S7b16povAUXG5m5vMzcuMhXZZsTblJdunNe6qpOpb10zhQvrLz6ufvO6_BhmYy96fNoksRTTwQ4wO1JaIRSlNKI0ohkIhRcgTSjWCpFOZKhTIUMQEqowAAqhLHKoiiLQgIIpwHqO7fdvzujP2tpK7bNrZBFwUupa8sgxhDCdmvSojd_0LWuTdlOx_wIIghDig_UoKOE0dYaqdjO5FtuGgYBOzTLDs2yY7OtEHXCPi9k8w_N4vvh7LfrdW5uK_l1dLnZMEIRxextPmL0JUGPT7MhW6Jv2-KKkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913118756</pqid></control><display><type>article</type><title>High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes</title><source>Wiley Online Library All Journals</source><creator>Wang, Xuan ; Behabtu, Natnael ; Young, Colin C. ; Tsentalovich, Dmitri E. ; Pasquali, Matteo ; Kono, Junichiro</creator><creatorcontrib>Wang, Xuan ; Behabtu, Natnael ; Young, Colin C. ; Tsentalovich, Dmitri E. ; Pasquali, Matteo ; Kono, Junichiro</creatorcontrib><description>The current‐carrying capacity (CCC), or ampacity, of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density (FCD) and continuous current rating (CCR) values. It is shown, both experimentally and theoretically, that the CCC of these fibers is determined by the balance between current‐induced Joule heating and heat exchange with the surroundings. The measured FCD values of the fibers range from 107 to 109 A m−2 and are generally higher than the previously reported values for aligned buckypapers, carbon fibers, and CNT fibers. To the authors’ knowledge, this is the first time the CCR for a CNT fiber has been reported. The specific CCC value (i.e., normalized by the linear mass density) of these CNT fibers are demonstrated to be higher than those of copper. The current‐carrying capacity (CCC) of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density and continuous current rating values. The specific CCC (i.e., normalized by the linear mass density) of our CNT fibers is demonstrated to be higher than that of copper, making those fibers promising for power transmission.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201303865</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Alignment ; ampacity ; Carbon fibers ; Carbon nanotubes ; Carrying capacity ; conducting polymers ; Copper ; current carrying capacity ; Current density ; Density ; Failure ; fiber ; Fibers ; Heat exchange ; Ohmic dissipation ; Power cables ; Power transmission ; power transmission cables ; Resistance heating</subject><ispartof>Advanced functional materials, 2014-06, Vol.24 (21), p.3241-3249</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4545-c46793b3b797796dc8caf0bd75eff7a3e8ebce40b67c501f355fd99d98606a743</citedby><cites>FETCH-LOGICAL-c4545-c46793b3b797796dc8caf0bd75eff7a3e8ebce40b67c501f355fd99d98606a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201303865$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201303865$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Behabtu, Natnael</creatorcontrib><creatorcontrib>Young, Colin C.</creatorcontrib><creatorcontrib>Tsentalovich, Dmitri E.</creatorcontrib><creatorcontrib>Pasquali, Matteo</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><title>High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The current‐carrying capacity (CCC), or ampacity, of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density (FCD) and continuous current rating (CCR) values. It is shown, both experimentally and theoretically, that the CCC of these fibers is determined by the balance between current‐induced Joule heating and heat exchange with the surroundings. The measured FCD values of the fibers range from 107 to 109 A m−2 and are generally higher than the previously reported values for aligned buckypapers, carbon fibers, and CNT fibers. To the authors’ knowledge, this is the first time the CCR for a CNT fiber has been reported. The specific CCC value (i.e., normalized by the linear mass density) of these CNT fibers are demonstrated to be higher than those of copper. The current‐carrying capacity (CCC) of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density and continuous current rating values. The specific CCC (i.e., normalized by the linear mass density) of our CNT fibers is demonstrated to be higher than that of copper, making those fibers promising for power transmission.</description><subject>Alignment</subject><subject>ampacity</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Carrying capacity</subject><subject>conducting polymers</subject><subject>Copper</subject><subject>current carrying capacity</subject><subject>Current density</subject><subject>Density</subject><subject>Failure</subject><subject>fiber</subject><subject>Fibers</subject><subject>Heat exchange</subject><subject>Ohmic dissipation</subject><subject>Power cables</subject><subject>Power transmission</subject><subject>power transmission cables</subject><subject>Resistance heating</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhosoOKdXzwUvXjqTpknaY6nuh25zyERvIU2T2a1rZtIy-9_bURnixUvyQp4nfN_rONcQDCAA_h3P1HbgA4gACgk-cXqQQOIh4Ienxwzfz50La9cAQEpR0HMm43z14cXbHRd51bgLvZfGTXhaSOtq5S7b16povAUXG5m5vMzcuMhXZZsTblJdunNe6qpOpb10zhQvrLz6ufvO6_BhmYy96fNoksRTTwQ4wO1JaIRSlNKI0ohkIhRcgTSjWCpFOZKhTIUMQEqowAAqhLHKoiiLQgIIpwHqO7fdvzujP2tpK7bNrZBFwUupa8sgxhDCdmvSojd_0LWuTdlOx_wIIghDig_UoKOE0dYaqdjO5FtuGgYBOzTLDs2yY7OtEHXCPi9k8w_N4vvh7LfrdW5uK_l1dLnZMEIRxextPmL0JUGPT7MhW6Jv2-KKkA</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Wang, Xuan</creator><creator>Behabtu, Natnael</creator><creator>Young, Colin C.</creator><creator>Tsentalovich, Dmitri E.</creator><creator>Pasquali, Matteo</creator><creator>Kono, Junichiro</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes</title><author>Wang, Xuan ; Behabtu, Natnael ; Young, Colin C. ; Tsentalovich, Dmitri E. ; Pasquali, Matteo ; Kono, Junichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4545-c46793b3b797796dc8caf0bd75eff7a3e8ebce40b67c501f355fd99d98606a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alignment</topic><topic>ampacity</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Carrying capacity</topic><topic>conducting polymers</topic><topic>Copper</topic><topic>current carrying capacity</topic><topic>Current density</topic><topic>Density</topic><topic>Failure</topic><topic>fiber</topic><topic>Fibers</topic><topic>Heat exchange</topic><topic>Ohmic dissipation</topic><topic>Power cables</topic><topic>Power transmission</topic><topic>power transmission cables</topic><topic>Resistance heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Behabtu, Natnael</creatorcontrib><creatorcontrib>Young, Colin C.</creatorcontrib><creatorcontrib>Tsentalovich, Dmitri E.</creatorcontrib><creatorcontrib>Pasquali, Matteo</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuan</au><au>Behabtu, Natnael</au><au>Young, Colin C.</au><au>Tsentalovich, Dmitri E.</au><au>Pasquali, Matteo</au><au>Kono, Junichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>24</volume><issue>21</issue><spage>3241</spage><epage>3249</epage><pages>3241-3249</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The current‐carrying capacity (CCC), or ampacity, of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density (FCD) and continuous current rating (CCR) values. It is shown, both experimentally and theoretically, that the CCC of these fibers is determined by the balance between current‐induced Joule heating and heat exchange with the surroundings. The measured FCD values of the fibers range from 107 to 109 A m−2 and are generally higher than the previously reported values for aligned buckypapers, carbon fibers, and CNT fibers. To the authors’ knowledge, this is the first time the CCR for a CNT fiber has been reported. The specific CCC value (i.e., normalized by the linear mass density) of these CNT fibers are demonstrated to be higher than those of copper. The current‐carrying capacity (CCC) of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density and continuous current rating values. The specific CCC (i.e., normalized by the linear mass density) of our CNT fibers is demonstrated to be higher than that of copper, making those fibers promising for power transmission.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201303865</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2014-06, Vol.24 (21), p.3241-3249
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1551110286
source Wiley Online Library All Journals
subjects Alignment
ampacity
Carbon fibers
Carbon nanotubes
Carrying capacity
conducting polymers
Copper
current carrying capacity
Current density
Density
Failure
fiber
Fibers
Heat exchange
Ohmic dissipation
Power cables
Power transmission
power transmission cables
Resistance heating
title High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Ampacity%20Power%20Cables%20of%20Tightly-Packed%20and%20Aligned%20Carbon%20Nanotubes&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Xuan&rft.date=2014-06-01&rft.volume=24&rft.issue=21&rft.spage=3241&rft.epage=3249&rft.pages=3241-3249&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201303865&rft_dat=%3Cproquest_cross%3E2913118756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913118756&rft_id=info:pmid/&rfr_iscdi=true