Sampling strategy for the sparse recovery of infrared images

The compressive sensing (CS) framework states that a signal that has a sparse representation in a known basis may be reconstructed from samples obtained at a sub-Nyquist sampling rate. The Fourier domain is widely used in CS applications due to its inherent properties. Sparse signal recovery applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2013-10, Vol.52 (28), p.6858-6867
Hauptverfasser: Cakir, Serdar, Uzeler, Hande, Aytaç, Tayfun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6867
container_issue 28
container_start_page 6858
container_title Applied optics (2004)
container_volume 52
creator Cakir, Serdar
Uzeler, Hande
Aytaç, Tayfun
description The compressive sensing (CS) framework states that a signal that has a sparse representation in a known basis may be reconstructed from samples obtained at a sub-Nyquist sampling rate. The Fourier domain is widely used in CS applications due to its inherent properties. Sparse signal recovery applications using a small number of Fourier transform coefficients have made solutions to large-scale data recovery problems, including image recovery problems, more practical. The sparse reconstruction of 2D images is performed using the sampling patterns generated by taking the general frequency characteristics of the images into account. In this work, instead of forming a general sampling pattern for infrared (IR) images, a special sampling pattern is obtained by gathering a database to extract the frequency characteristics of IR sea-surveillance images. Experimental results show that the proposed sampling pattern provides better sparse recovery results compared to the widely used patterns proposed in the literature. It is also shown that, together with a certain image dataset, the sampling pattern generated by the proposed scheme can be generalized for various image sparse recovery applications.
doi_str_mv 10.1364/AO.52.006858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551106846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551106846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-926fc06342b65242502a87c92caecafd5b782dedf36d305f4ec3198c4eb359d03</originalsourceid><addsrcrecordid>eNqFkEtLAzEYRYMoWqs715KlC6fm3QTclOILCl2o4C5kki91ZKYzJlOh_96RVreu7l0cLtyD0AUlE8qVuJktJ5JNCFFa6gM0YlTKglMlD9FoqKagTL-doNOcPwjhUpjpMTphgmhJjRmh22fXdHW1XuHcJ9fDaotjm3D_Djh3LmXACXz7BWmL24irdUwuQcBV41aQz9BRdHWG832O0ev93cv8sVgsH57ms0XhORN9YZiKniguWKkkE0wS5vTUG-YdeBeDLKeaBQiRq8CJjAI8p0Z7ASWXJhA-Rle73S61nxvIvW2q7KGu3RraTbbDT0oHAUL9jwrBuRGKiAG93qE-tTkniLZLw6-0tZTYH7V2trSS2Z3aAb_cL2_KBsIf_OuSfwPLmnK_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443394604</pqid></control><display><type>article</type><title>Sampling strategy for the sparse recovery of infrared images</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Cakir, Serdar ; Uzeler, Hande ; Aytaç, Tayfun</creator><creatorcontrib>Cakir, Serdar ; Uzeler, Hande ; Aytaç, Tayfun</creatorcontrib><description>The compressive sensing (CS) framework states that a signal that has a sparse representation in a known basis may be reconstructed from samples obtained at a sub-Nyquist sampling rate. The Fourier domain is widely used in CS applications due to its inherent properties. Sparse signal recovery applications using a small number of Fourier transform coefficients have made solutions to large-scale data recovery problems, including image recovery problems, more practical. The sparse reconstruction of 2D images is performed using the sampling patterns generated by taking the general frequency characteristics of the images into account. In this work, instead of forming a general sampling pattern for infrared (IR) images, a special sampling pattern is obtained by gathering a database to extract the frequency characteristics of IR sea-surveillance images. Experimental results show that the proposed sampling pattern provides better sparse recovery results compared to the widely used patterns proposed in the literature. It is also shown that, together with a certain image dataset, the sampling pattern generated by the proposed scheme can be generalized for various image sparse recovery applications.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.52.006858</identifier><identifier>PMID: 24085199</identifier><language>eng</language><publisher>United States</publisher><subject>Fourier analysis ; Image reconstruction ; Infrared ; Recovery ; Sampling ; Strategy</subject><ispartof>Applied optics (2004), 2013-10, Vol.52 (28), p.6858-6867</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-926fc06342b65242502a87c92caecafd5b782dedf36d305f4ec3198c4eb359d03</citedby><cites>FETCH-LOGICAL-c324t-926fc06342b65242502a87c92caecafd5b782dedf36d305f4ec3198c4eb359d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24085199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cakir, Serdar</creatorcontrib><creatorcontrib>Uzeler, Hande</creatorcontrib><creatorcontrib>Aytaç, Tayfun</creatorcontrib><title>Sampling strategy for the sparse recovery of infrared images</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The compressive sensing (CS) framework states that a signal that has a sparse representation in a known basis may be reconstructed from samples obtained at a sub-Nyquist sampling rate. The Fourier domain is widely used in CS applications due to its inherent properties. Sparse signal recovery applications using a small number of Fourier transform coefficients have made solutions to large-scale data recovery problems, including image recovery problems, more practical. The sparse reconstruction of 2D images is performed using the sampling patterns generated by taking the general frequency characteristics of the images into account. In this work, instead of forming a general sampling pattern for infrared (IR) images, a special sampling pattern is obtained by gathering a database to extract the frequency characteristics of IR sea-surveillance images. Experimental results show that the proposed sampling pattern provides better sparse recovery results compared to the widely used patterns proposed in the literature. It is also shown that, together with a certain image dataset, the sampling pattern generated by the proposed scheme can be generalized for various image sparse recovery applications.</description><subject>Fourier analysis</subject><subject>Image reconstruction</subject><subject>Infrared</subject><subject>Recovery</subject><subject>Sampling</subject><subject>Strategy</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEYRYMoWqs715KlC6fm3QTclOILCl2o4C5kki91ZKYzJlOh_96RVreu7l0cLtyD0AUlE8qVuJktJ5JNCFFa6gM0YlTKglMlD9FoqKagTL-doNOcPwjhUpjpMTphgmhJjRmh22fXdHW1XuHcJ9fDaotjm3D_Djh3LmXACXz7BWmL24irdUwuQcBV41aQz9BRdHWG832O0ev93cv8sVgsH57ms0XhORN9YZiKniguWKkkE0wS5vTUG-YdeBeDLKeaBQiRq8CJjAI8p0Z7ASWXJhA-Rle73S61nxvIvW2q7KGu3RraTbbDT0oHAUL9jwrBuRGKiAG93qE-tTkniLZLw6-0tZTYH7V2trSS2Z3aAb_cL2_KBsIf_OuSfwPLmnK_</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Cakir, Serdar</creator><creator>Uzeler, Hande</creator><creator>Aytaç, Tayfun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Sampling strategy for the sparse recovery of infrared images</title><author>Cakir, Serdar ; Uzeler, Hande ; Aytaç, Tayfun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-926fc06342b65242502a87c92caecafd5b782dedf36d305f4ec3198c4eb359d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Fourier analysis</topic><topic>Image reconstruction</topic><topic>Infrared</topic><topic>Recovery</topic><topic>Sampling</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakir, Serdar</creatorcontrib><creatorcontrib>Uzeler, Hande</creatorcontrib><creatorcontrib>Aytaç, Tayfun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakir, Serdar</au><au>Uzeler, Hande</au><au>Aytaç, Tayfun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling strategy for the sparse recovery of infrared images</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>52</volume><issue>28</issue><spage>6858</spage><epage>6867</epage><pages>6858-6867</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The compressive sensing (CS) framework states that a signal that has a sparse representation in a known basis may be reconstructed from samples obtained at a sub-Nyquist sampling rate. The Fourier domain is widely used in CS applications due to its inherent properties. Sparse signal recovery applications using a small number of Fourier transform coefficients have made solutions to large-scale data recovery problems, including image recovery problems, more practical. The sparse reconstruction of 2D images is performed using the sampling patterns generated by taking the general frequency characteristics of the images into account. In this work, instead of forming a general sampling pattern for infrared (IR) images, a special sampling pattern is obtained by gathering a database to extract the frequency characteristics of IR sea-surveillance images. Experimental results show that the proposed sampling pattern provides better sparse recovery results compared to the widely used patterns proposed in the literature. It is also shown that, together with a certain image dataset, the sampling pattern generated by the proposed scheme can be generalized for various image sparse recovery applications.</abstract><cop>United States</cop><pmid>24085199</pmid><doi>10.1364/AO.52.006858</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2013-10, Vol.52 (28), p.6858-6867
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_1551106846
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Fourier analysis
Image reconstruction
Infrared
Recovery
Sampling
Strategy
title Sampling strategy for the sparse recovery of infrared images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20strategy%20for%20the%20sparse%20recovery%20of%20infrared%20images&rft.jtitle=Applied%20optics%20(2004)&rft.au=Cakir,%20Serdar&rft.date=2013-10-01&rft.volume=52&rft.issue=28&rft.spage=6858&rft.epage=6867&rft.pages=6858-6867&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.52.006858&rft_dat=%3Cproquest_cross%3E1551106846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443394604&rft_id=info:pmid/24085199&rfr_iscdi=true