A bilevel programming approach to double optimal stopping
This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlin...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-07, Vol.238, p.393-396 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | |
container_start_page | 393 |
container_title | Applied mathematics and computation |
container_volume | 238 |
creator | Makasu, Cloud |
description | This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly. |
doi_str_mv | 10.1016/j.amc.2014.04.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551105836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314005487</els_id><sourcerecordid>1551105836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89emmdJE3a4GlZ_AcLXvQcknS6Zmk3NekKfnuzrGfhwTDwe8ObR8gthYoClfe7yoyuYkDrCrJYfUYWtG14KWStzskCQMmSA_BLcpXSDgAaSesFUavC-gG_cSimGLbRjKPfbwsz5c24z2IORRcOdsAiTLMfzVCkOUxTZq7JRW-GhDd_c0k-nh7f1y_l5u35db3alI5zmMuO2b4x1kjseN_VXFrkpqE1CMEtMFCMSWEN1q2VVDjWGQWtogoUKkDkfEnuTndzoq8DplmPPjkcBrPHcEiaCkEpiJbLjNIT6mJIKWKvp5gzxx9NQR9r0juda9LHmjRksTp7Hk4ezD98e4w6OY97h52P6GbdBf-P-xeqjW9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551105836</pqid></control><display><type>article</type><title>A bilevel programming approach to double optimal stopping</title><source>Elsevier ScienceDirect Journals</source><creator>Makasu, Cloud</creator><creatorcontrib>Makasu, Cloud</creatorcontrib><description>This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.04.024</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bilevel programming problem ; Computation ; Double optimal stopping problem ; Integral options ; Integrals ; Mathematical models ; Nonlinearity ; Optimization ; Pricing ; Programming</subject><ispartof>Applied mathematics and computation, 2014-07, Vol.238, p.393-396</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</citedby><cites>FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314005487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Makasu, Cloud</creatorcontrib><title>A bilevel programming approach to double optimal stopping</title><title>Applied mathematics and computation</title><description>This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.</description><subject>Bilevel programming problem</subject><subject>Computation</subject><subject>Double optimal stopping problem</subject><subject>Integral options</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Programming</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89emmdJE3a4GlZ_AcLXvQcknS6Zmk3NekKfnuzrGfhwTDwe8ObR8gthYoClfe7yoyuYkDrCrJYfUYWtG14KWStzskCQMmSA_BLcpXSDgAaSesFUavC-gG_cSimGLbRjKPfbwsz5c24z2IORRcOdsAiTLMfzVCkOUxTZq7JRW-GhDd_c0k-nh7f1y_l5u35db3alI5zmMuO2b4x1kjseN_VXFrkpqE1CMEtMFCMSWEN1q2VVDjWGQWtogoUKkDkfEnuTndzoq8DplmPPjkcBrPHcEiaCkEpiJbLjNIT6mJIKWKvp5gzxx9NQR9r0juda9LHmjRksTp7Hk4ezD98e4w6OY97h52P6GbdBf-P-xeqjW9D</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Makasu, Cloud</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>A bilevel programming approach to double optimal stopping</title><author>Makasu, Cloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bilevel programming problem</topic><topic>Computation</topic><topic>Double optimal stopping problem</topic><topic>Integral options</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makasu, Cloud</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makasu, Cloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bilevel programming approach to double optimal stopping</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>238</volume><spage>393</spage><epage>396</epage><pages>393-396</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.04.024</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-07, Vol.238, p.393-396 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551105836 |
source | Elsevier ScienceDirect Journals |
subjects | Bilevel programming problem Computation Double optimal stopping problem Integral options Integrals Mathematical models Nonlinearity Optimization Pricing Programming |
title | A bilevel programming approach to double optimal stopping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bilevel%20programming%20approach%20to%20double%20optimal%20stopping&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Makasu,%20Cloud&rft.date=2014-07-01&rft.volume=238&rft.spage=393&rft.epage=396&rft.pages=393-396&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.04.024&rft_dat=%3Cproquest_cross%3E1551105836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551105836&rft_id=info:pmid/&rft_els_id=S0096300314005487&rfr_iscdi=true |