A bilevel programming approach to double optimal stopping

This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-07, Vol.238, p.393-396
1. Verfasser: Makasu, Cloud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue
container_start_page 393
container_title Applied mathematics and computation
container_volume 238
creator Makasu, Cloud
description This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.
doi_str_mv 10.1016/j.amc.2014.04.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551105836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314005487</els_id><sourcerecordid>1551105836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89emmdJE3a4GlZ_AcLXvQcknS6Zmk3NekKfnuzrGfhwTDwe8ObR8gthYoClfe7yoyuYkDrCrJYfUYWtG14KWStzskCQMmSA_BLcpXSDgAaSesFUavC-gG_cSimGLbRjKPfbwsz5c24z2IORRcOdsAiTLMfzVCkOUxTZq7JRW-GhDd_c0k-nh7f1y_l5u35db3alI5zmMuO2b4x1kjseN_VXFrkpqE1CMEtMFCMSWEN1q2VVDjWGQWtogoUKkDkfEnuTndzoq8DplmPPjkcBrPHcEiaCkEpiJbLjNIT6mJIKWKvp5gzxx9NQR9r0juda9LHmjRksTp7Hk4ezD98e4w6OY97h52P6GbdBf-P-xeqjW9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551105836</pqid></control><display><type>article</type><title>A bilevel programming approach to double optimal stopping</title><source>Elsevier ScienceDirect Journals</source><creator>Makasu, Cloud</creator><creatorcontrib>Makasu, Cloud</creatorcontrib><description>This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.04.024</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bilevel programming problem ; Computation ; Double optimal stopping problem ; Integral options ; Integrals ; Mathematical models ; Nonlinearity ; Optimization ; Pricing ; Programming</subject><ispartof>Applied mathematics and computation, 2014-07, Vol.238, p.393-396</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</citedby><cites>FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314005487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Makasu, Cloud</creatorcontrib><title>A bilevel programming approach to double optimal stopping</title><title>Applied mathematics and computation</title><description>This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.</description><subject>Bilevel programming problem</subject><subject>Computation</subject><subject>Double optimal stopping problem</subject><subject>Integral options</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Programming</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89emmdJE3a4GlZ_AcLXvQcknS6Zmk3NekKfnuzrGfhwTDwe8ObR8gthYoClfe7yoyuYkDrCrJYfUYWtG14KWStzskCQMmSA_BLcpXSDgAaSesFUavC-gG_cSimGLbRjKPfbwsz5c24z2IORRcOdsAiTLMfzVCkOUxTZq7JRW-GhDd_c0k-nh7f1y_l5u35db3alI5zmMuO2b4x1kjseN_VXFrkpqE1CMEtMFCMSWEN1q2VVDjWGQWtogoUKkDkfEnuTndzoq8DplmPPjkcBrPHcEiaCkEpiJbLjNIT6mJIKWKvp5gzxx9NQR9r0juda9LHmjRksTp7Hk4ezD98e4w6OY97h52P6GbdBf-P-xeqjW9D</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Makasu, Cloud</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>A bilevel programming approach to double optimal stopping</title><author>Makasu, Cloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-d2bf7aba6ed3fd436be3a7140553b02092265bae48b615c2da90891909e90ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bilevel programming problem</topic><topic>Computation</topic><topic>Double optimal stopping problem</topic><topic>Integral options</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makasu, Cloud</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makasu, Cloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bilevel programming approach to double optimal stopping</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>238</volume><spage>393</spage><epage>396</epage><pages>393-396</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper treats a class of double optimal stopping problems arising in the pricing of integral options. Under certain conditions, we give an explicit form of the double stopping time for such type of optimal stopping problems. The present results are essentially derived by solving a certain nonlinear bilevel programming problem explicitly.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.04.024</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-07, Vol.238, p.393-396
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1551105836
source Elsevier ScienceDirect Journals
subjects Bilevel programming problem
Computation
Double optimal stopping problem
Integral options
Integrals
Mathematical models
Nonlinearity
Optimization
Pricing
Programming
title A bilevel programming approach to double optimal stopping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bilevel%20programming%20approach%20to%20double%20optimal%20stopping&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Makasu,%20Cloud&rft.date=2014-07-01&rft.volume=238&rft.spage=393&rft.epage=396&rft.pages=393-396&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.04.024&rft_dat=%3Cproquest_cross%3E1551105836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551105836&rft_id=info:pmid/&rft_els_id=S0096300314005487&rfr_iscdi=true