Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model

We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of nonintera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2014-09, Vol.409, p.78-86
Hauptverfasser: Nascimento, E.S., de Lima, J.P., Salinas, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 78
container_title Physica A
container_volume 409
creator Nascimento, E.S.
de Lima, J.P.
Salinas, S.R.
description We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1. •The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.
doi_str_mv 10.1016/j.physa.2014.04.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551090557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037843711400363X</els_id><sourcerecordid>1551090557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBCweWRKu4yRuBoYK8VOplAU2JMuxr1VX-cNOK3XjNXg9noSkZUY60hnud650DiHXDGIGLL_dxN16H1ScAEtjGJWdkAmbCR4ljBWnZAJczKKUC3ZOLkLYAAATPJmQj5fWbCvVo6HdWgUMVDWGGty56ufrO9DQK-f14eAaqmil9ugHuEbVRNZhZegOfXBtQ1tL-zXS-Wq1WtC6NVhdkjOrqoBXfz4l748Pb_fP0fL1aXE_X0Y6TUUfiVSUoAyUoLmFnGmb56UBVhqdJBZEYZOUFxmywhQZNzYZeqWFnjE0luvS8im5Of7tfPu5xdDL2gWNVaUabLdBsixjUECWiQHlR1T7NgSPVnbe1crvJQM5bik38rClHLeUMCobUnfHFA4tdg69DNpho9E4j7qXpnX_5n8BLst_Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090557</pqid></control><display><type>article</type><title>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</title><source>Elsevier ScienceDirect Journals</source><creator>Nascimento, E.S. ; de Lima, J.P. ; Salinas, S.R.</creator><creatorcontrib>Nascimento, E.S. ; de Lima, J.P. ; Salinas, S.R.</creatorcontrib><description>We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1. •The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2014.04.045</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ANNNI model ; Constraining ; Devil’s staircase ; Fractal analysis ; Ground state ; Ising model ; Lifshitz point ; Locks ; Mathematical models ; Modulated phases ; Phases ; Staircases</subject><ispartof>Physica A, 2014-09, Vol.409, p.78-86</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</citedby><cites>FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037843711400363X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Nascimento, E.S.</creatorcontrib><creatorcontrib>de Lima, J.P.</creatorcontrib><creatorcontrib>Salinas, S.R.</creatorcontrib><title>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</title><title>Physica A</title><description>We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1. •The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.</description><subject>ANNNI model</subject><subject>Constraining</subject><subject>Devil’s staircase</subject><subject>Fractal analysis</subject><subject>Ground state</subject><subject>Ising model</subject><subject>Lifshitz point</subject><subject>Locks</subject><subject>Mathematical models</subject><subject>Modulated phases</subject><subject>Phases</subject><subject>Staircases</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBCweWRKu4yRuBoYK8VOplAU2JMuxr1VX-cNOK3XjNXg9noSkZUY60hnud650DiHXDGIGLL_dxN16H1ScAEtjGJWdkAmbCR4ljBWnZAJczKKUC3ZOLkLYAAATPJmQj5fWbCvVo6HdWgUMVDWGGty56ufrO9DQK-f14eAaqmil9ugHuEbVRNZhZegOfXBtQ1tL-zXS-Wq1WtC6NVhdkjOrqoBXfz4l748Pb_fP0fL1aXE_X0Y6TUUfiVSUoAyUoLmFnGmb56UBVhqdJBZEYZOUFxmywhQZNzYZeqWFnjE0luvS8im5Of7tfPu5xdDL2gWNVaUabLdBsixjUECWiQHlR1T7NgSPVnbe1crvJQM5bik38rClHLeUMCobUnfHFA4tdg69DNpho9E4j7qXpnX_5n8BLst_Qw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Nascimento, E.S.</creator><creator>de Lima, J.P.</creator><creator>Salinas, S.R.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</title><author>Nascimento, E.S. ; de Lima, J.P. ; Salinas, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ANNNI model</topic><topic>Constraining</topic><topic>Devil’s staircase</topic><topic>Fractal analysis</topic><topic>Ground state</topic><topic>Ising model</topic><topic>Lifshitz point</topic><topic>Locks</topic><topic>Mathematical models</topic><topic>Modulated phases</topic><topic>Phases</topic><topic>Staircases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, E.S.</creatorcontrib><creatorcontrib>de Lima, J.P.</creatorcontrib><creatorcontrib>Salinas, S.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nascimento, E.S.</au><au>de Lima, J.P.</au><au>Salinas, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</atitle><jtitle>Physica A</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>409</volume><spage>78</spage><epage>86</epage><pages>78-86</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1. •The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2014.04.045</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2014-09, Vol.409, p.78-86
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_1551090557
source Elsevier ScienceDirect Journals
subjects ANNNI model
Constraining
Devil’s staircase
Fractal analysis
Ground state
Ising model
Lifshitz point
Locks
Mathematical models
Modulated phases
Phases
Staircases
title Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulated%20phases%20and%20devil%E2%80%99s%20staircases%20in%20a%20layered%20mean-field%20version%20of%20the%20ANNNI%20model&rft.jtitle=Physica%20A&rft.au=Nascimento,%20E.S.&rft.date=2014-09-01&rft.volume=409&rft.spage=78&rft.epage=86&rft.pages=78-86&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2014.04.045&rft_dat=%3Cproquest_cross%3E1551090557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551090557&rft_id=info:pmid/&rft_els_id=S037843711400363X&rfr_iscdi=true