Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model
We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of nonintera...
Gespeichert in:
Veröffentlicht in: | Physica A 2014-09, Vol.409, p.78-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | Physica A |
container_volume | 409 |
creator | Nascimento, E.S. de Lima, J.P. Salinas, S.R. |
description | We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1.
•The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases. |
doi_str_mv | 10.1016/j.physa.2014.04.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551090557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037843711400363X</els_id><sourcerecordid>1551090557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBCweWRKu4yRuBoYK8VOplAU2JMuxr1VX-cNOK3XjNXg9noSkZUY60hnud650DiHXDGIGLL_dxN16H1ScAEtjGJWdkAmbCR4ljBWnZAJczKKUC3ZOLkLYAAATPJmQj5fWbCvVo6HdWgUMVDWGGty56ufrO9DQK-f14eAaqmil9ugHuEbVRNZhZegOfXBtQ1tL-zXS-Wq1WtC6NVhdkjOrqoBXfz4l748Pb_fP0fL1aXE_X0Y6TUUfiVSUoAyUoLmFnGmb56UBVhqdJBZEYZOUFxmywhQZNzYZeqWFnjE0luvS8im5Of7tfPu5xdDL2gWNVaUabLdBsixjUECWiQHlR1T7NgSPVnbe1crvJQM5bik38rClHLeUMCobUnfHFA4tdg69DNpho9E4j7qXpnX_5n8BLst_Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090557</pqid></control><display><type>article</type><title>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</title><source>Elsevier ScienceDirect Journals</source><creator>Nascimento, E.S. ; de Lima, J.P. ; Salinas, S.R.</creator><creatorcontrib>Nascimento, E.S. ; de Lima, J.P. ; Salinas, S.R.</creatorcontrib><description>We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1.
•The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2014.04.045</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ANNNI model ; Constraining ; Devil’s staircase ; Fractal analysis ; Ground state ; Ising model ; Lifshitz point ; Locks ; Mathematical models ; Modulated phases ; Phases ; Staircases</subject><ispartof>Physica A, 2014-09, Vol.409, p.78-86</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</citedby><cites>FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037843711400363X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Nascimento, E.S.</creatorcontrib><creatorcontrib>de Lima, J.P.</creatorcontrib><creatorcontrib>Salinas, S.R.</creatorcontrib><title>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</title><title>Physica A</title><description>We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1.
•The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.</description><subject>ANNNI model</subject><subject>Constraining</subject><subject>Devil’s staircase</subject><subject>Fractal analysis</subject><subject>Ground state</subject><subject>Ising model</subject><subject>Lifshitz point</subject><subject>Locks</subject><subject>Mathematical models</subject><subject>Modulated phases</subject><subject>Phases</subject><subject>Staircases</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBCweWRKu4yRuBoYK8VOplAU2JMuxr1VX-cNOK3XjNXg9noSkZUY60hnud650DiHXDGIGLL_dxN16H1ScAEtjGJWdkAmbCR4ljBWnZAJczKKUC3ZOLkLYAAATPJmQj5fWbCvVo6HdWgUMVDWGGty56ufrO9DQK-f14eAaqmil9ugHuEbVRNZhZegOfXBtQ1tL-zXS-Wq1WtC6NVhdkjOrqoBXfz4l748Pb_fP0fL1aXE_X0Y6TUUfiVSUoAyUoLmFnGmb56UBVhqdJBZEYZOUFxmywhQZNzYZeqWFnjE0luvS8im5Of7tfPu5xdDL2gWNVaUabLdBsixjUECWiQHlR1T7NgSPVnbe1crvJQM5bik38rClHLeUMCobUnfHFA4tdg69DNpho9E4j7qXpnX_5n8BLst_Qw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Nascimento, E.S.</creator><creator>de Lima, J.P.</creator><creator>Salinas, S.R.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</title><author>Nascimento, E.S. ; de Lima, J.P. ; Salinas, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-747b0ad0b0c3f061cf66bd01bdc22f079f24395e19d953df287349c81edf3cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ANNNI model</topic><topic>Constraining</topic><topic>Devil’s staircase</topic><topic>Fractal analysis</topic><topic>Ground state</topic><topic>Ising model</topic><topic>Lifshitz point</topic><topic>Locks</topic><topic>Mathematical models</topic><topic>Modulated phases</topic><topic>Phases</topic><topic>Staircases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, E.S.</creatorcontrib><creatorcontrib>de Lima, J.P.</creatorcontrib><creatorcontrib>Salinas, S.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nascimento, E.S.</au><au>de Lima, J.P.</au><au>Salinas, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model</atitle><jtitle>Physica A</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>409</volume><spage>78</spage><epage>86</epage><pages>78-86</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil’s staircase. We numerically calculate the Hausdorff dimension D0 associated with these fractal structures, and show that D0 increases with temperature but seems to reach a limiting value smaller than D0=1.
•The ANNNI model displays a spectacular phase diagram with many modulated structures.•We formulate an analog of the ANNNI model, with fully connected layers of spins.•The wave number of the modulated phases gives rise to a devil’s staircase.•We obtain the temperature dependence of the Hausdorff dimension of the staircases.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2014.04.045</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4371 |
ispartof | Physica A, 2014-09, Vol.409, p.78-86 |
issn | 0378-4371 1873-2119 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551090557 |
source | Elsevier ScienceDirect Journals |
subjects | ANNNI model Constraining Devil’s staircase Fractal analysis Ground state Ising model Lifshitz point Locks Mathematical models Modulated phases Phases Staircases |
title | Modulated phases and devil’s staircases in a layered mean-field version of the ANNNI model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulated%20phases%20and%20devil%E2%80%99s%20staircases%20in%20a%20layered%20mean-field%20version%20of%20the%20ANNNI%20model&rft.jtitle=Physica%20A&rft.au=Nascimento,%20E.S.&rft.date=2014-09-01&rft.volume=409&rft.spage=78&rft.epage=86&rft.pages=78-86&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2014.04.045&rft_dat=%3Cproquest_cross%3E1551090557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551090557&rft_id=info:pmid/&rft_els_id=S037843711400363X&rfr_iscdi=true |