Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative

In this paper, group analysis of the time fractional Harry-Dym equation with Riemann–Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2014-09, Vol.409, p.110-118
Hauptverfasser: Huang, Qing, Zhdanov, Renat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue
container_start_page 110
container_title Physica A
container_volume 409
creator Huang, Qing
Zhdanov, Renat
description In this paper, group analysis of the time fractional Harry-Dym equation with Riemann–Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invariant solutions in explicit form are obtained as well. •Lie classical method is used to investigate the time fractional Harry-Dym equation.•The maximal Lie symmetry group of the equation under study is derived.•Optimal system of subgroups are determined and the optimization of the system is proved.•Reduced fractional ODEs and some exact solutions in explicit forms are presented.•The approach used here can also be applied to other nonlinear fractional PDEs.
doi_str_mv 10.1016/j.physa.2014.04.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551089998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437114003616</els_id><sourcerecordid>1551089998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-15d771d53c419290100db51058907632d9b016a42a00c3d1f820bf01a395513</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxBWy8ZJMyEzdNvGCBeEuVkIC95doT1VUexXYK2fEP_CFfQkJZI4000p1zR7qXsTOEKQLOL9bTzaoPepoCzqYwjthjEyxykaSIcp9NQORFMhM5HrKjENYAgLlIJ6x66euaoncUuG4spw9tIg9t1UXXNoG3JY8r4tHVxEs_3AZVV_xBe98nN33N6a3To8jfXVzxZ0e1bprvz6-Fa7utqyrilrzbDsyWTthBqatAp3_7mL3c3b5ePySLp_vH66tFYoSYxwQzm-doM2FmKFMJCGCXGUJWSMjnIrVyOYTWs1QDGGGxLFJYloBayCxDcczOd183vn3rKERVu2CoqnRDbRcUDhAUUspiQMUONb4NwVOpNt7V2vcKQY3NqrX6bVaNzSoYRwyuy52LhgxbR14F46gxZJ0nE5Vt3b_-H-qZhHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551089998</pqid></control><display><type>article</type><title>Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, Qing ; Zhdanov, Renat</creator><creatorcontrib>Huang, Qing ; Zhdanov, Renat</creatorcontrib><description>In this paper, group analysis of the time fractional Harry-Dym equation with Riemann–Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invariant solutions in explicit form are obtained as well. •Lie classical method is used to investigate the time fractional Harry-Dym equation.•The maximal Lie symmetry group of the equation under study is derived.•Optimal system of subgroups are determined and the optimization of the system is proved.•Reduced fractional ODEs and some exact solutions in explicit forms are presented.•The approach used here can also be applied to other nonlinear fractional PDEs.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2014.04.043</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Derivatives ; Differential equations ; Exact solutions ; Fractional Harry-Dym equation ; Group-invariant solution ; Invariants ; Lie symmetry ; Mathematical analysis ; Optimal system ; Optimization ; Riemann–Liouville derivative ; Similarity ; Symmetry</subject><ispartof>Physica A, 2014-09, Vol.409, p.110-118</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-15d771d53c419290100db51058907632d9b016a42a00c3d1f820bf01a395513</citedby><cites>FETCH-LOGICAL-c336t-15d771d53c419290100db51058907632d9b016a42a00c3d1f820bf01a395513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physa.2014.04.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Huang, Qing</creatorcontrib><creatorcontrib>Zhdanov, Renat</creatorcontrib><title>Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative</title><title>Physica A</title><description>In this paper, group analysis of the time fractional Harry-Dym equation with Riemann–Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invariant solutions in explicit form are obtained as well. •Lie classical method is used to investigate the time fractional Harry-Dym equation.•The maximal Lie symmetry group of the equation under study is derived.•Optimal system of subgroups are determined and the optimization of the system is proved.•Reduced fractional ODEs and some exact solutions in explicit forms are presented.•The approach used here can also be applied to other nonlinear fractional PDEs.</description><subject>Derivatives</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Fractional Harry-Dym equation</subject><subject>Group-invariant solution</subject><subject>Invariants</subject><subject>Lie symmetry</subject><subject>Mathematical analysis</subject><subject>Optimal system</subject><subject>Optimization</subject><subject>Riemann–Liouville derivative</subject><subject>Similarity</subject><subject>Symmetry</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxBWy8ZJMyEzdNvGCBeEuVkIC95doT1VUexXYK2fEP_CFfQkJZI4000p1zR7qXsTOEKQLOL9bTzaoPepoCzqYwjthjEyxykaSIcp9NQORFMhM5HrKjENYAgLlIJ6x66euaoncUuG4spw9tIg9t1UXXNoG3JY8r4tHVxEs_3AZVV_xBe98nN33N6a3To8jfXVzxZ0e1bprvz6-Fa7utqyrilrzbDsyWTthBqatAp3_7mL3c3b5ePySLp_vH66tFYoSYxwQzm-doM2FmKFMJCGCXGUJWSMjnIrVyOYTWs1QDGGGxLFJYloBayCxDcczOd183vn3rKERVu2CoqnRDbRcUDhAUUspiQMUONb4NwVOpNt7V2vcKQY3NqrX6bVaNzSoYRwyuy52LhgxbR14F46gxZJ0nE5Vt3b_-H-qZhHQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Huang, Qing</creator><creator>Zhdanov, Renat</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative</title><author>Huang, Qing ; Zhdanov, Renat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-15d771d53c419290100db51058907632d9b016a42a00c3d1f820bf01a395513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Derivatives</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Fractional Harry-Dym equation</topic><topic>Group-invariant solution</topic><topic>Invariants</topic><topic>Lie symmetry</topic><topic>Mathematical analysis</topic><topic>Optimal system</topic><topic>Optimization</topic><topic>Riemann–Liouville derivative</topic><topic>Similarity</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qing</creatorcontrib><creatorcontrib>Zhdanov, Renat</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qing</au><au>Zhdanov, Renat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative</atitle><jtitle>Physica A</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>409</volume><spage>110</spage><epage>118</epage><pages>110-118</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>In this paper, group analysis of the time fractional Harry-Dym equation with Riemann–Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invariant solutions in explicit form are obtained as well. •Lie classical method is used to investigate the time fractional Harry-Dym equation.•The maximal Lie symmetry group of the equation under study is derived.•Optimal system of subgroups are determined and the optimization of the system is proved.•Reduced fractional ODEs and some exact solutions in explicit forms are presented.•The approach used here can also be applied to other nonlinear fractional PDEs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2014.04.043</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2014-09, Vol.409, p.110-118
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_1551089998
source ScienceDirect Journals (5 years ago - present)
subjects Derivatives
Differential equations
Exact solutions
Fractional Harry-Dym equation
Group-invariant solution
Invariants
Lie symmetry
Mathematical analysis
Optimal system
Optimization
Riemann–Liouville derivative
Similarity
Symmetry
title Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20and%20exact%20solutions%20of%20the%20time%20fractional%20Harry-Dym%20equation%20with%20Riemann%E2%80%93Liouville%20derivative&rft.jtitle=Physica%20A&rft.au=Huang,%20Qing&rft.date=2014-09-01&rft.volume=409&rft.spage=110&rft.epage=118&rft.pages=110-118&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2014.04.043&rft_dat=%3Cproquest_cross%3E1551089998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551089998&rft_id=info:pmid/&rft_els_id=S0378437114003616&rfr_iscdi=true