Dynamics of Swirling Flames
In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begin...
Gespeichert in:
Veröffentlicht in: | Annual Review of Fluid Mechanics 2014-01, Vol.46 (1), p.147-173 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Annual Review of Fluid Mechanics |
container_volume | 46 |
creator | Candel, Sébastien Durox, Daniel Schuller, Thierry Bourgouin, Jean-François Moeck, Jonas P |
description | In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference. |
doi_str_mv | 10.1146/annurev-fluid-010313-141300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551086647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551086647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</originalsourceid><addsrcrecordid>eNqVkEtLAzEURoMPsNb-AjcFEdxEb94Z3CjVqlBwoa5DmkkkMp2pScfSf-_UKa51dTfnng8OQmcELgnh8srWdZv8Fw5VG0sMBBhhmHDCAPbQgAguMOeq2EejQmnQlDNQXNIDNACQEnOiiyN0nPMHAGgi9ACd3m1qu4guj5swflnHVMX6fTyt7MLnE3QYbJX9aHeH6G16_zp5xLPnh6fJ7QxbwdQKM1YG4efg6LxwQmpVSupDWVBBNfhC8eC0VV5o64QOTnISJGdCCFI4NVeEDdFF712m5rP1eWUWMTtfVbb2TZsNkZxSIbj8A9pZQUvJVYde96hLTc7JB7NMcWHTxhAw25pmV9P81DR9TdPX7L7Pd0M2O1uFZGsX86-CaqWoltuVm57bymzV6aJf539NfQMp94pX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551086647</pqid></control><display><type>article</type><title>Dynamics of Swirling Flames</title><source>Annual Reviews Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Candel, Sébastien ; Durox, Daniel ; Schuller, Thierry ; Bourgouin, Jean-François ; Moeck, Jonas P</creator><creatorcontrib>Candel, Sébastien ; Durox, Daniel ; Schuller, Thierry ; Bourgouin, Jean-François ; Moeck, Jonas P</creatorcontrib><description>In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.</description><identifier>ISSN: 0066-4189</identifier><identifier>ISBN: 9780824307462</identifier><identifier>ISBN: 0824307461</identifier><identifier>EISSN: 1545-4479</identifier><identifier>DOI: 10.1146/annurev-fluid-010313-141300</identifier><identifier>CODEN: ARVFA3</identifier><language>eng</language><publisher>Palo Alto, CA: Annual Reviews</publisher><subject>Acoustics ; Applied sciences ; combustion dynamics ; combustion instabilities ; Combustion. Flame ; Disturbances ; Dynamics ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; flame describing function ; Fluctuation ; Fluid dynamics ; Fluid flow ; Nonlinearity ; precessing vortex core ; swirl number ; Swirling ; Theoretical studies ; Theoretical studies. Data and constants. Metering</subject><ispartof>Annual Review of Fluid Mechanics, 2014-01, Vol.46 (1), p.147-173</ispartof><rights>Copyright © 2014 by Annual Reviews. All rights reserved 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</citedby><cites>FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010313-141300?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010313-141300$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,775,776,780,789,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28772867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Candel, Sébastien</creatorcontrib><creatorcontrib>Durox, Daniel</creatorcontrib><creatorcontrib>Schuller, Thierry</creatorcontrib><creatorcontrib>Bourgouin, Jean-François</creatorcontrib><creatorcontrib>Moeck, Jonas P</creatorcontrib><title>Dynamics of Swirling Flames</title><title>Annual Review of Fluid Mechanics</title><description>In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.</description><subject>Acoustics</subject><subject>Applied sciences</subject><subject>combustion dynamics</subject><subject>combustion instabilities</subject><subject>Combustion. Flame</subject><subject>Disturbances</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>flame describing function</subject><subject>Fluctuation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Nonlinearity</subject><subject>precessing vortex core</subject><subject>swirl number</subject><subject>Swirling</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0066-4189</issn><issn>1545-4479</issn><isbn>9780824307462</isbn><isbn>0824307461</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVkEtLAzEURoMPsNb-AjcFEdxEb94Z3CjVqlBwoa5DmkkkMp2pScfSf-_UKa51dTfnng8OQmcELgnh8srWdZv8Fw5VG0sMBBhhmHDCAPbQgAguMOeq2EejQmnQlDNQXNIDNACQEnOiiyN0nPMHAGgi9ACd3m1qu4guj5swflnHVMX6fTyt7MLnE3QYbJX9aHeH6G16_zp5xLPnh6fJ7QxbwdQKM1YG4efg6LxwQmpVSupDWVBBNfhC8eC0VV5o64QOTnISJGdCCFI4NVeEDdFF712m5rP1eWUWMTtfVbb2TZsNkZxSIbj8A9pZQUvJVYde96hLTc7JB7NMcWHTxhAw25pmV9P81DR9TdPX7L7Pd0M2O1uFZGsX86-CaqWoltuVm57bymzV6aJf539NfQMp94pX</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Candel, Sébastien</creator><creator>Durox, Daniel</creator><creator>Schuller, Thierry</creator><creator>Bourgouin, Jean-François</creator><creator>Moeck, Jonas P</creator><general>Annual Reviews</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Dynamics of Swirling Flames</title><author>Candel, Sébastien ; Durox, Daniel ; Schuller, Thierry ; Bourgouin, Jean-François ; Moeck, Jonas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Applied sciences</topic><topic>combustion dynamics</topic><topic>combustion instabilities</topic><topic>Combustion. Flame</topic><topic>Disturbances</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>flame describing function</topic><topic>Fluctuation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Nonlinearity</topic><topic>precessing vortex core</topic><topic>swirl number</topic><topic>Swirling</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candel, Sébastien</creatorcontrib><creatorcontrib>Durox, Daniel</creatorcontrib><creatorcontrib>Schuller, Thierry</creatorcontrib><creatorcontrib>Bourgouin, Jean-François</creatorcontrib><creatorcontrib>Moeck, Jonas P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annual Review of Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candel, Sébastien</au><au>Durox, Daniel</au><au>Schuller, Thierry</au><au>Bourgouin, Jean-François</au><au>Moeck, Jonas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Swirling Flames</atitle><jtitle>Annual Review of Fluid Mechanics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>46</volume><issue>1</issue><spage>147</spage><epage>173</epage><pages>147-173</pages><issn>0066-4189</issn><eissn>1545-4479</eissn><isbn>9780824307462</isbn><isbn>0824307461</isbn><coden>ARVFA3</coden><abstract>In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.</abstract><cop>Palo Alto, CA</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-fluid-010313-141300</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4189 |
ispartof | Annual Review of Fluid Mechanics, 2014-01, Vol.46 (1), p.147-173 |
issn | 0066-4189 1545-4479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551086647 |
source | Annual Reviews Complete A-Z List; Alma/SFX Local Collection |
subjects | Acoustics Applied sciences combustion dynamics combustion instabilities Combustion. Flame Disturbances Dynamics Energy Energy. Thermal use of fuels Exact sciences and technology flame describing function Fluctuation Fluid dynamics Fluid flow Nonlinearity precessing vortex core swirl number Swirling Theoretical studies Theoretical studies. Data and constants. Metering |
title | Dynamics of Swirling Flames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Swirling%20Flames&rft.jtitle=Annual%20Review%20of%20Fluid%20Mechanics&rft.au=Candel,%20S%C3%A9bastien&rft.date=2014-01-01&rft.volume=46&rft.issue=1&rft.spage=147&rft.epage=173&rft.pages=147-173&rft.issn=0066-4189&rft.eissn=1545-4479&rft.isbn=9780824307462&rft.isbn_list=0824307461&rft.coden=ARVFA3&rft_id=info:doi/10.1146/annurev-fluid-010313-141300&rft_dat=%3Cproquest_pasca%3E1551086647%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551086647&rft_id=info:pmid/&rfr_iscdi=true |