Dynamics of Swirling Flames

In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual Review of Fluid Mechanics 2014-01, Vol.46 (1), p.147-173
Hauptverfasser: Candel, Sébastien, Durox, Daniel, Schuller, Thierry, Bourgouin, Jean-François, Moeck, Jonas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 1
container_start_page 147
container_title Annual Review of Fluid Mechanics
container_volume 46
creator Candel, Sébastien
Durox, Daniel
Schuller, Thierry
Bourgouin, Jean-François
Moeck, Jonas P
description In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.
doi_str_mv 10.1146/annurev-fluid-010313-141300
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551086647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551086647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</originalsourceid><addsrcrecordid>eNqVkEtLAzEURoMPsNb-AjcFEdxEb94Z3CjVqlBwoa5DmkkkMp2pScfSf-_UKa51dTfnng8OQmcELgnh8srWdZv8Fw5VG0sMBBhhmHDCAPbQgAguMOeq2EejQmnQlDNQXNIDNACQEnOiiyN0nPMHAGgi9ACd3m1qu4guj5swflnHVMX6fTyt7MLnE3QYbJX9aHeH6G16_zp5xLPnh6fJ7QxbwdQKM1YG4efg6LxwQmpVSupDWVBBNfhC8eC0VV5o64QOTnISJGdCCFI4NVeEDdFF712m5rP1eWUWMTtfVbb2TZsNkZxSIbj8A9pZQUvJVYde96hLTc7JB7NMcWHTxhAw25pmV9P81DR9TdPX7L7Pd0M2O1uFZGsX86-CaqWoltuVm57bymzV6aJf539NfQMp94pX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551086647</pqid></control><display><type>article</type><title>Dynamics of Swirling Flames</title><source>Annual Reviews Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Candel, Sébastien ; Durox, Daniel ; Schuller, Thierry ; Bourgouin, Jean-François ; Moeck, Jonas P</creator><creatorcontrib>Candel, Sébastien ; Durox, Daniel ; Schuller, Thierry ; Bourgouin, Jean-François ; Moeck, Jonas P</creatorcontrib><description>In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.</description><identifier>ISSN: 0066-4189</identifier><identifier>ISBN: 9780824307462</identifier><identifier>ISBN: 0824307461</identifier><identifier>EISSN: 1545-4479</identifier><identifier>DOI: 10.1146/annurev-fluid-010313-141300</identifier><identifier>CODEN: ARVFA3</identifier><language>eng</language><publisher>Palo Alto, CA: Annual Reviews</publisher><subject>Acoustics ; Applied sciences ; combustion dynamics ; combustion instabilities ; Combustion. Flame ; Disturbances ; Dynamics ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; flame describing function ; Fluctuation ; Fluid dynamics ; Fluid flow ; Nonlinearity ; precessing vortex core ; swirl number ; Swirling ; Theoretical studies ; Theoretical studies. Data and constants. Metering</subject><ispartof>Annual Review of Fluid Mechanics, 2014-01, Vol.46 (1), p.147-173</ispartof><rights>Copyright © 2014 by Annual Reviews. All rights reserved 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</citedby><cites>FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010313-141300?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010313-141300$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,775,776,780,789,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28772867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Candel, Sébastien</creatorcontrib><creatorcontrib>Durox, Daniel</creatorcontrib><creatorcontrib>Schuller, Thierry</creatorcontrib><creatorcontrib>Bourgouin, Jean-François</creatorcontrib><creatorcontrib>Moeck, Jonas P</creatorcontrib><title>Dynamics of Swirling Flames</title><title>Annual Review of Fluid Mechanics</title><description>In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.</description><subject>Acoustics</subject><subject>Applied sciences</subject><subject>combustion dynamics</subject><subject>combustion instabilities</subject><subject>Combustion. Flame</subject><subject>Disturbances</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>flame describing function</subject><subject>Fluctuation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Nonlinearity</subject><subject>precessing vortex core</subject><subject>swirl number</subject><subject>Swirling</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0066-4189</issn><issn>1545-4479</issn><isbn>9780824307462</isbn><isbn>0824307461</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVkEtLAzEURoMPsNb-AjcFEdxEb94Z3CjVqlBwoa5DmkkkMp2pScfSf-_UKa51dTfnng8OQmcELgnh8srWdZv8Fw5VG0sMBBhhmHDCAPbQgAguMOeq2EejQmnQlDNQXNIDNACQEnOiiyN0nPMHAGgi9ACd3m1qu4guj5swflnHVMX6fTyt7MLnE3QYbJX9aHeH6G16_zp5xLPnh6fJ7QxbwdQKM1YG4efg6LxwQmpVSupDWVBBNfhC8eC0VV5o64QOTnISJGdCCFI4NVeEDdFF712m5rP1eWUWMTtfVbb2TZsNkZxSIbj8A9pZQUvJVYde96hLTc7JB7NMcWHTxhAw25pmV9P81DR9TdPX7L7Pd0M2O1uFZGsX86-CaqWoltuVm57bymzV6aJf539NfQMp94pX</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Candel, Sébastien</creator><creator>Durox, Daniel</creator><creator>Schuller, Thierry</creator><creator>Bourgouin, Jean-François</creator><creator>Moeck, Jonas P</creator><general>Annual Reviews</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Dynamics of Swirling Flames</title><author>Candel, Sébastien ; Durox, Daniel ; Schuller, Thierry ; Bourgouin, Jean-François ; Moeck, Jonas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-33df5eb0c2b9c5687d62efd925280e974fc8a7e58ac58fc641f64355519c7b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Applied sciences</topic><topic>combustion dynamics</topic><topic>combustion instabilities</topic><topic>Combustion. Flame</topic><topic>Disturbances</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>flame describing function</topic><topic>Fluctuation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Nonlinearity</topic><topic>precessing vortex core</topic><topic>swirl number</topic><topic>Swirling</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candel, Sébastien</creatorcontrib><creatorcontrib>Durox, Daniel</creatorcontrib><creatorcontrib>Schuller, Thierry</creatorcontrib><creatorcontrib>Bourgouin, Jean-François</creatorcontrib><creatorcontrib>Moeck, Jonas P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annual Review of Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candel, Sébastien</au><au>Durox, Daniel</au><au>Schuller, Thierry</au><au>Bourgouin, Jean-François</au><au>Moeck, Jonas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Swirling Flames</atitle><jtitle>Annual Review of Fluid Mechanics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>46</volume><issue>1</issue><spage>147</spage><epage>173</epage><pages>147-173</pages><issn>0066-4189</issn><eissn>1545-4479</eissn><isbn>9780824307462</isbn><isbn>0824307461</isbn><coden>ARVFA3</coden><abstract>In many continuous combustion processes, such as those found in aeroengines or gas turbines, the flame is stabilized by a swirling flow formed by aerodynamic swirlers. The dynamics of such swirling flames is of technical and fundamental interest. This article reviews progress in this field and begins with a discussion of the swirl number, a parameter that plays a central role in the definition of the flow structure and its response to incoming disturbances. Interaction between the swirler response and incoming acoustic perturbations generates a vorticity wave convected by the flow, which is accompanied by azimuthal velocity fluctuations. Axial and azimuthal velocities in turn define the flame response in terms of heat--release rate fluctuations. The nonlinear response of swirling flames to incoming disturbances is conveniently represented with a flame describing function (FDF), in other words, with a family of transfer functions depending on frequency and incident axial velocity amplitudes. The FDF, however, does not reflect all possible nonlinear interactions in swirling flows. This aspect is illustrated with experimental data and some theoretical arguments in the last part of this article, which concerns the interaction of incident acoustic disturbances with the precessing vortex core, giving rise to nonlinear fluctuations at the frequency difference.</abstract><cop>Palo Alto, CA</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-fluid-010313-141300</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-4189
ispartof Annual Review of Fluid Mechanics, 2014-01, Vol.46 (1), p.147-173
issn 0066-4189
1545-4479
language eng
recordid cdi_proquest_miscellaneous_1551086647
source Annual Reviews Complete A-Z List; Alma/SFX Local Collection
subjects Acoustics
Applied sciences
combustion dynamics
combustion instabilities
Combustion. Flame
Disturbances
Dynamics
Energy
Energy. Thermal use of fuels
Exact sciences and technology
flame describing function
Fluctuation
Fluid dynamics
Fluid flow
Nonlinearity
precessing vortex core
swirl number
Swirling
Theoretical studies
Theoretical studies. Data and constants. Metering
title Dynamics of Swirling Flames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Swirling%20Flames&rft.jtitle=Annual%20Review%20of%20Fluid%20Mechanics&rft.au=Candel,%20S%C3%A9bastien&rft.date=2014-01-01&rft.volume=46&rft.issue=1&rft.spage=147&rft.epage=173&rft.pages=147-173&rft.issn=0066-4189&rft.eissn=1545-4479&rft.isbn=9780824307462&rft.isbn_list=0824307461&rft.coden=ARVFA3&rft_id=info:doi/10.1146/annurev-fluid-010313-141300&rft_dat=%3Cproquest_pasca%3E1551086647%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551086647&rft_id=info:pmid/&rfr_iscdi=true