Particle swarm optimization for bitmap join indexes selection problem in data warehouses
Data warehouses are very large databases usually designed using the star schema. Queries defined on data warehouses are generally complex due to join operations involved. The performance of star schema queries in data warehouses is highly critical and its optimization is hard in general. Several que...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2014-05, Vol.68 (2), p.672-708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | 2 |
container_start_page | 672 |
container_title | The Journal of supercomputing |
container_volume | 68 |
creator | Toumi, Lyazid Moussaoui, Abdelouahab Ugur, Ahmet |
description | Data warehouses are very large databases usually designed using the star schema. Queries defined on data warehouses are generally complex due to join operations involved. The performance of star schema queries in data warehouses is highly critical and its optimization is hard in general. Several query performance optimization methods exist, such as indexes and table partitioning. In this paper, we propose a new approach based on binary particle swarm optimization for solving the bitmap join index selection problem in data warehouses. This approach selects the optimal set of bitmap join indexes based on a mathematical cost model. Several experiments are performed to demonstrate the effectiveness of the proposed method on the bitmap join index selection problem. Further testing of the method is performed using a database environment specific cost function. The binary particle swarm optimization is found to be more effective than both the genetic algorithm and data mining based approaches. |
doi_str_mv | 10.1007/s11227-013-1058-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551082317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551082317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-bad47f84d5a41667d1c86d6674b1d111e61a50852391bc6f4f39b0a9ca4c6a9c3</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOC4_wFuOXqKpLL0cZXCDAT0oeAvpdLVm6O6MSQ8uv96M7dlTFdR7j1cfIWfAL4Dz8jIBCFEyDpIB1xWr98gCdCkZV5XaJwteC84qrcQhOUppzTlXspQL8vJo4-RdjzR92DjQsJn84L_t5MNIuxBp46fBbug6-JH6scVPTDRhj-5XsYmh6XHIF9raydKcgW9hmzCdkIPO9glP_-Yxeb65flresdXD7f3yasWcFDCxxraq7CrVaqugKMoWXFW0eVENtACABVjNKy1kDY0rOtXJuuG2dla5Ig95TM7n3FzlfYtpMoNPDvvejpiLGNAaeCUklFkKs9TFkFLEzmyiH2z8MsDNjqKZKZpM0ewomjp7xOxJWTu-YjTrsI1j_ugf0w99jHX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551082317</pqid></control><display><type>article</type><title>Particle swarm optimization for bitmap join indexes selection problem in data warehouses</title><source>SpringerLink Journals - AutoHoldings</source><creator>Toumi, Lyazid ; Moussaoui, Abdelouahab ; Ugur, Ahmet</creator><creatorcontrib>Toumi, Lyazid ; Moussaoui, Abdelouahab ; Ugur, Ahmet</creatorcontrib><description>Data warehouses are very large databases usually designed using the star schema. Queries defined on data warehouses are generally complex due to join operations involved. The performance of star schema queries in data warehouses is highly critical and its optimization is hard in general. Several query performance optimization methods exist, such as indexes and table partitioning. In this paper, we propose a new approach based on binary particle swarm optimization for solving the bitmap join index selection problem in data warehouses. This approach selects the optimal set of bitmap join indexes based on a mathematical cost model. Several experiments are performed to demonstrate the effectiveness of the proposed method on the bitmap join index selection problem. Further testing of the method is performed using a database environment specific cost function. The binary particle swarm optimization is found to be more effective than both the genetic algorithm and data mining based approaches.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-013-1058-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Compilers ; Computer Science ; Data warehousing ; Interpreters ; Mathematical models ; Optimization ; Performance indices ; Processor Architectures ; Programming Languages ; Queries ; Stars ; Swarm intelligence</subject><ispartof>The Journal of supercomputing, 2014-05, Vol.68 (2), p.672-708</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-bad47f84d5a41667d1c86d6674b1d111e61a50852391bc6f4f39b0a9ca4c6a9c3</citedby><cites>FETCH-LOGICAL-c321t-bad47f84d5a41667d1c86d6674b1d111e61a50852391bc6f4f39b0a9ca4c6a9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-013-1058-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-013-1058-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Toumi, Lyazid</creatorcontrib><creatorcontrib>Moussaoui, Abdelouahab</creatorcontrib><creatorcontrib>Ugur, Ahmet</creatorcontrib><title>Particle swarm optimization for bitmap join indexes selection problem in data warehouses</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Data warehouses are very large databases usually designed using the star schema. Queries defined on data warehouses are generally complex due to join operations involved. The performance of star schema queries in data warehouses is highly critical and its optimization is hard in general. Several query performance optimization methods exist, such as indexes and table partitioning. In this paper, we propose a new approach based on binary particle swarm optimization for solving the bitmap join index selection problem in data warehouses. This approach selects the optimal set of bitmap join indexes based on a mathematical cost model. Several experiments are performed to demonstrate the effectiveness of the proposed method on the bitmap join index selection problem. Further testing of the method is performed using a database environment specific cost function. The binary particle swarm optimization is found to be more effective than both the genetic algorithm and data mining based approaches.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Data warehousing</subject><subject>Interpreters</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Performance indices</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Queries</subject><subject>Stars</subject><subject>Swarm intelligence</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kElLBDEQhYMoOC4_wFuOXqKpLL0cZXCDAT0oeAvpdLVm6O6MSQ8uv96M7dlTFdR7j1cfIWfAL4Dz8jIBCFEyDpIB1xWr98gCdCkZV5XaJwteC84qrcQhOUppzTlXspQL8vJo4-RdjzR92DjQsJn84L_t5MNIuxBp46fBbug6-JH6scVPTDRhj-5XsYmh6XHIF9raydKcgW9hmzCdkIPO9glP_-Yxeb65flresdXD7f3yasWcFDCxxraq7CrVaqugKMoWXFW0eVENtACABVjNKy1kDY0rOtXJuuG2dla5Ig95TM7n3FzlfYtpMoNPDvvejpiLGNAaeCUklFkKs9TFkFLEzmyiH2z8MsDNjqKZKZpM0ewomjp7xOxJWTu-YjTrsI1j_ugf0w99jHX_</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Toumi, Lyazid</creator><creator>Moussaoui, Abdelouahab</creator><creator>Ugur, Ahmet</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>Particle swarm optimization for bitmap join indexes selection problem in data warehouses</title><author>Toumi, Lyazid ; Moussaoui, Abdelouahab ; Ugur, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-bad47f84d5a41667d1c86d6674b1d111e61a50852391bc6f4f39b0a9ca4c6a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Data warehousing</topic><topic>Interpreters</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Performance indices</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Queries</topic><topic>Stars</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toumi, Lyazid</creatorcontrib><creatorcontrib>Moussaoui, Abdelouahab</creatorcontrib><creatorcontrib>Ugur, Ahmet</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toumi, Lyazid</au><au>Moussaoui, Abdelouahab</au><au>Ugur, Ahmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle swarm optimization for bitmap join indexes selection problem in data warehouses</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>68</volume><issue>2</issue><spage>672</spage><epage>708</epage><pages>672-708</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Data warehouses are very large databases usually designed using the star schema. Queries defined on data warehouses are generally complex due to join operations involved. The performance of star schema queries in data warehouses is highly critical and its optimization is hard in general. Several query performance optimization methods exist, such as indexes and table partitioning. In this paper, we propose a new approach based on binary particle swarm optimization for solving the bitmap join index selection problem in data warehouses. This approach selects the optimal set of bitmap join indexes based on a mathematical cost model. Several experiments are performed to demonstrate the effectiveness of the proposed method on the bitmap join index selection problem. Further testing of the method is performed using a database environment specific cost function. The binary particle swarm optimization is found to be more effective than both the genetic algorithm and data mining based approaches.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11227-013-1058-9</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2014-05, Vol.68 (2), p.672-708 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551082317 |
source | SpringerLink Journals - AutoHoldings |
subjects | Compilers Computer Science Data warehousing Interpreters Mathematical models Optimization Performance indices Processor Architectures Programming Languages Queries Stars Swarm intelligence |
title | Particle swarm optimization for bitmap join indexes selection problem in data warehouses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20swarm%20optimization%20for%20bitmap%20join%20indexes%20selection%20problem%20in%20data%20warehouses&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Toumi,%20Lyazid&rft.date=2014-05-01&rft.volume=68&rft.issue=2&rft.spage=672&rft.epage=708&rft.pages=672-708&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-013-1058-9&rft_dat=%3Cproquest_cross%3E1551082317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551082317&rft_id=info:pmid/&rfr_iscdi=true |