Copula selection for graphical models in continuous Estimation of Distribution Algorithms

This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2014-06, Vol.29 (3-4), p.685-713
Hauptverfasser: Salinas-Gutiérrez, Rogelio, Hernández-Aguirre, Arturo, Villa-Diharce, Enrique R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 3-4
container_start_page 685
container_title Computational statistics
container_volume 29
creator Salinas-Gutiérrez, Rogelio
Hernández-Aguirre, Arturo
Villa-Diharce, Enrique R.
description This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables.
doi_str_mv 10.1007/s00180-013-0457-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551079145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551079145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ce0f3b7d58a6ecad94656484bf61d422a56c6f75c74371d3eb50ba478b0d4a263</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEuXxA9gisbAErh0_krEq5SFVYoGByXIcp3XlxMVOhv573IYBITFdHek7R-cehG4w3GMA8RABcAk54CIHykS-P0EzzJOqOCtP0QwqWuQUODlHFzFuAQgRBM_Q58LvRqeyaJzRg_V91vqQrYPabaxWLut8Y1zMbJ9p3w-2H_0Ys2UcbKeOtG-zRxuHYOvxqOdu7YMdNl28QmetctFc_9xL9PG0fF-85Ku359fFfJXrglZDrg20RS0aViputGoqyhmnJa1bjhtKiGJc81YwLWghcFOYmkGtqChraKgivLhEd1PuLviv0cRBdjZq45zqTSorMWMYRIUpS-jtH3Trx9CndokqgJEKkwOFJ0oHH2MwrdyF9G7YSwzyMLacxpZpbHkYW-6Th0yemNh-bcKv5H9N32x3gwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530529125</pqid></control><display><type>article</type><title>Copula selection for graphical models in continuous Estimation of Distribution Algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>Salinas-Gutiérrez, Rogelio ; Hernández-Aguirre, Arturo ; Villa-Diharce, Enrique R.</creator><creatorcontrib>Salinas-Gutiérrez, Rogelio ; Hernández-Aguirre, Arturo ; Villa-Diharce, Enrique R.</creatorcontrib><description>This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-013-0457-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Entropy ; Gaussian ; Genetic algorithms ; Learning ; Mathematical analysis ; Mathematical models ; Mathematics and Statistics ; Maximum likelihood method ; Multivariate analysis ; Optimization ; Optimization techniques ; Original Paper ; Polytopes ; Population ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Random variables ; Statistics ; Studies</subject><ispartof>Computational statistics, 2014-06, Vol.29 (3-4), p.685-713</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ce0f3b7d58a6ecad94656484bf61d422a56c6f75c74371d3eb50ba478b0d4a263</citedby><cites>FETCH-LOGICAL-c349t-ce0f3b7d58a6ecad94656484bf61d422a56c6f75c74371d3eb50ba478b0d4a263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-013-0457-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-013-0457-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Salinas-Gutiérrez, Rogelio</creatorcontrib><creatorcontrib>Hernández-Aguirre, Arturo</creatorcontrib><creatorcontrib>Villa-Diharce, Enrique R.</creatorcontrib><title>Copula selection for graphical models in continuous Estimation of Distribution Algorithms</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Entropy</subject><subject>Gaussian</subject><subject>Genetic algorithms</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Multivariate analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Original Paper</subject><subject>Polytopes</subject><subject>Population</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Statistics</subject><subject>Studies</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kDtPwzAUhS0EEuXxA9gisbAErh0_krEq5SFVYoGByXIcp3XlxMVOhv573IYBITFdHek7R-cehG4w3GMA8RABcAk54CIHykS-P0EzzJOqOCtP0QwqWuQUODlHFzFuAQgRBM_Q58LvRqeyaJzRg_V91vqQrYPabaxWLut8Y1zMbJ9p3w-2H_0Ys2UcbKeOtG-zRxuHYOvxqOdu7YMdNl28QmetctFc_9xL9PG0fF-85Ku359fFfJXrglZDrg20RS0aViputGoqyhmnJa1bjhtKiGJc81YwLWghcFOYmkGtqChraKgivLhEd1PuLviv0cRBdjZq45zqTSorMWMYRIUpS-jtH3Trx9CndokqgJEKkwOFJ0oHH2MwrdyF9G7YSwzyMLacxpZpbHkYW-6Th0yemNh-bcKv5H9N32x3gwo</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Salinas-Gutiérrez, Rogelio</creator><creator>Hernández-Aguirre, Arturo</creator><creator>Villa-Diharce, Enrique R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>Copula selection for graphical models in continuous Estimation of Distribution Algorithms</title><author>Salinas-Gutiérrez, Rogelio ; Hernández-Aguirre, Arturo ; Villa-Diharce, Enrique R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ce0f3b7d58a6ecad94656484bf61d422a56c6f75c74371d3eb50ba478b0d4a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Entropy</topic><topic>Gaussian</topic><topic>Genetic algorithms</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Multivariate analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Original Paper</topic><topic>Polytopes</topic><topic>Population</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salinas-Gutiérrez, Rogelio</creatorcontrib><creatorcontrib>Hernández-Aguirre, Arturo</creatorcontrib><creatorcontrib>Villa-Diharce, Enrique R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salinas-Gutiérrez, Rogelio</au><au>Hernández-Aguirre, Arturo</au><au>Villa-Diharce, Enrique R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copula selection for graphical models in continuous Estimation of Distribution Algorithms</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>29</volume><issue>3-4</issue><spage>685</spage><epage>713</epage><pages>685-713</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-013-0457-y</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2014-06, Vol.29 (3-4), p.685-713
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_miscellaneous_1551079145
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Entropy
Gaussian
Genetic algorithms
Learning
Mathematical analysis
Mathematical models
Mathematics and Statistics
Maximum likelihood method
Multivariate analysis
Optimization
Optimization techniques
Original Paper
Polytopes
Population
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Random variables
Statistics
Studies
title Copula selection for graphical models in continuous Estimation of Distribution Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copula%20selection%20for%20graphical%20models%20in%20continuous%20Estimation%20of%20Distribution%20Algorithms&rft.jtitle=Computational%20statistics&rft.au=Salinas-Guti%C3%A9rrez,%20Rogelio&rft.date=2014-06-01&rft.volume=29&rft.issue=3-4&rft.spage=685&rft.epage=713&rft.pages=685-713&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-013-0457-y&rft_dat=%3Cproquest_cross%3E1551079145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530529125&rft_id=info:pmid/&rfr_iscdi=true