Invariant Hough Random Ferns for Object Detection and Tracking
This paper introduces an invariant Hough random ferns (IHRF) incorporating rotation and scale invariance into the local feature description, random ferns classifier training, and Hough voting stages. It is especially suited for object detection under changes in object appearance and scale, partial o...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2014-01, Vol.2014 (2014), p.1-20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2014 |
creator | Lin, Yimin Lu, Naiguang Lou, Xiaoping Zou, Fang Yao, Yanbin Du, Zhaocai |
description | This paper introduces an invariant Hough random ferns (IHRF) incorporating rotation and scale invariance into the local feature description, random ferns classifier training, and Hough voting stages. It is especially suited for object detection under changes in object appearance and scale, partial occlusions, and pose variations. The efficacy of this approach is validated through experiments on a large set of challenging benchmark datasets, and the results demonstrate that the proposed method outperforms state-of-the-art conventional methods such as bounding-box-based and part-based methods. Additionally, we also propose an efficient clustering scheme based on the local patches’ appearance and their geometric relations that can provide pixel-accurate, top-down segmentations from IHRF back-projections. This refined segmentation can be used to improve the quality of online object tracking because it avoids the drifting problem. Thus, an online tracking framework based on IHRF, which is trained and updated in each frame to distinguish and segment the object from the background, is established. Finally, the experimental results on both object segmentation and long-term object tracking show that this method yields accurate and robust tracking performance in a variety of complex scenarios, especially in cases of severe occlusions and nonrigid deformations. |
doi_str_mv | 10.1155/2014/513283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551075822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551075822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d8b08cd28f0bc4524d7478effb97737cceb64c1b3405e8a858d477eb9f0fb3b53</originalsourceid><addsrcrecordid>eNqF0D1LAzEYB_AgCtbq5CwEXEQ5m9cmXQSp1hYKBangdiS5pL3aJjW5Kn57U04cXJyeZ_jxvPwBOMfoFmPOewRh1uOYEkkPQAfzPi04ZuIw94iwAhP6egxOUlohRDDHsgPuJv5DxVr5Bo7DbrGEz8pXYQNHNvoEXYhwplfWNPDBNrnUwcMM4Dwq81b7xSk4cmqd7NlP7YKX0eN8OC6ms6fJ8H5aGCplU1RSI2kqIh3ShnHCKsGEtM7pgRBUGGN1nxmsKUPcSiW5rJgQVg8ccppqTrvgqp27jeF9Z1NTbupk7HqtvA27VObnMRJcEpLp5R-6Crvo83VZ9ZlgdL-zC25aZWJIKVpXbmO9UfGrxKjcZ1nusyzbLLO-bvWy9pX6rP_BFy22mVinfnF-iQ8E_QYH1ns9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564743977</pqid></control><display><type>article</type><title>Invariant Hough Random Ferns for Object Detection and Tracking</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Lin, Yimin ; Lu, Naiguang ; Lou, Xiaoping ; Zou, Fang ; Yao, Yanbin ; Du, Zhaocai</creator><contributor>Cervantes, Ilse C.</contributor><creatorcontrib>Lin, Yimin ; Lu, Naiguang ; Lou, Xiaoping ; Zou, Fang ; Yao, Yanbin ; Du, Zhaocai ; Cervantes, Ilse C.</creatorcontrib><description>This paper introduces an invariant Hough random ferns (IHRF) incorporating rotation and scale invariance into the local feature description, random ferns classifier training, and Hough voting stages. It is especially suited for object detection under changes in object appearance and scale, partial occlusions, and pose variations. The efficacy of this approach is validated through experiments on a large set of challenging benchmark datasets, and the results demonstrate that the proposed method outperforms state-of-the-art conventional methods such as bounding-box-based and part-based methods. Additionally, we also propose an efficient clustering scheme based on the local patches’ appearance and their geometric relations that can provide pixel-accurate, top-down segmentations from IHRF back-projections. This refined segmentation can be used to improve the quality of online object tracking because it avoids the drifting problem. Thus, an online tracking framework based on IHRF, which is trained and updated in each frame to distinguish and segment the object from the background, is established. Finally, the experimental results on both object segmentation and long-term object tracking show that this method yields accurate and robust tracking performance in a variety of complex scenarios, especially in cases of severe occlusions and nonrigid deformations.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2014/513283</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Clustering ; Conferences ; Distance learning ; Drift ; Ferns ; Hypotheses ; Invariants ; Laboratories ; Methods ; Noise ; Object recognition ; Occlusion ; Online ; Scale invariance ; Segmentation ; Tracking</subject><ispartof>Mathematical problems in engineering, 2014-01, Vol.2014 (2014), p.1-20</ispartof><rights>Copyright © 2014 Yimin Lin et al.</rights><rights>Copyright © 2014 Yimin Lin et al. Yimin Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d8b08cd28f0bc4524d7478effb97737cceb64c1b3405e8a858d477eb9f0fb3b53</citedby><cites>FETCH-LOGICAL-c388t-d8b08cd28f0bc4524d7478effb97737cceb64c1b3405e8a858d477eb9f0fb3b53</cites><orcidid>0000-0001-8096-4819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Cervantes, Ilse C.</contributor><creatorcontrib>Lin, Yimin</creatorcontrib><creatorcontrib>Lu, Naiguang</creatorcontrib><creatorcontrib>Lou, Xiaoping</creatorcontrib><creatorcontrib>Zou, Fang</creatorcontrib><creatorcontrib>Yao, Yanbin</creatorcontrib><creatorcontrib>Du, Zhaocai</creatorcontrib><title>Invariant Hough Random Ferns for Object Detection and Tracking</title><title>Mathematical problems in engineering</title><description>This paper introduces an invariant Hough random ferns (IHRF) incorporating rotation and scale invariance into the local feature description, random ferns classifier training, and Hough voting stages. It is especially suited for object detection under changes in object appearance and scale, partial occlusions, and pose variations. The efficacy of this approach is validated through experiments on a large set of challenging benchmark datasets, and the results demonstrate that the proposed method outperforms state-of-the-art conventional methods such as bounding-box-based and part-based methods. Additionally, we also propose an efficient clustering scheme based on the local patches’ appearance and their geometric relations that can provide pixel-accurate, top-down segmentations from IHRF back-projections. This refined segmentation can be used to improve the quality of online object tracking because it avoids the drifting problem. Thus, an online tracking framework based on IHRF, which is trained and updated in each frame to distinguish and segment the object from the background, is established. Finally, the experimental results on both object segmentation and long-term object tracking show that this method yields accurate and robust tracking performance in a variety of complex scenarios, especially in cases of severe occlusions and nonrigid deformations.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Conferences</subject><subject>Distance learning</subject><subject>Drift</subject><subject>Ferns</subject><subject>Hypotheses</subject><subject>Invariants</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Noise</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>Online</subject><subject>Scale invariance</subject><subject>Segmentation</subject><subject>Tracking</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0D1LAzEYB_AgCtbq5CwEXEQ5m9cmXQSp1hYKBangdiS5pL3aJjW5Kn57U04cXJyeZ_jxvPwBOMfoFmPOewRh1uOYEkkPQAfzPi04ZuIw94iwAhP6egxOUlohRDDHsgPuJv5DxVr5Bo7DbrGEz8pXYQNHNvoEXYhwplfWNPDBNrnUwcMM4Dwq81b7xSk4cmqd7NlP7YKX0eN8OC6ms6fJ8H5aGCplU1RSI2kqIh3ShnHCKsGEtM7pgRBUGGN1nxmsKUPcSiW5rJgQVg8ccppqTrvgqp27jeF9Z1NTbupk7HqtvA27VObnMRJcEpLp5R-6Crvo83VZ9ZlgdL-zC25aZWJIKVpXbmO9UfGrxKjcZ1nusyzbLLO-bvWy9pX6rP_BFy22mVinfnF-iQ8E_QYH1ns9</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Lin, Yimin</creator><creator>Lu, Naiguang</creator><creator>Lou, Xiaoping</creator><creator>Zou, Fang</creator><creator>Yao, Yanbin</creator><creator>Du, Zhaocai</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8096-4819</orcidid></search><sort><creationdate>20140101</creationdate><title>Invariant Hough Random Ferns for Object Detection and Tracking</title><author>Lin, Yimin ; Lu, Naiguang ; Lou, Xiaoping ; Zou, Fang ; Yao, Yanbin ; Du, Zhaocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d8b08cd28f0bc4524d7478effb97737cceb64c1b3405e8a858d477eb9f0fb3b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Conferences</topic><topic>Distance learning</topic><topic>Drift</topic><topic>Ferns</topic><topic>Hypotheses</topic><topic>Invariants</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Noise</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>Online</topic><topic>Scale invariance</topic><topic>Segmentation</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yimin</creatorcontrib><creatorcontrib>Lu, Naiguang</creatorcontrib><creatorcontrib>Lou, Xiaoping</creatorcontrib><creatorcontrib>Zou, Fang</creatorcontrib><creatorcontrib>Yao, Yanbin</creatorcontrib><creatorcontrib>Du, Zhaocai</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yimin</au><au>Lu, Naiguang</au><au>Lou, Xiaoping</au><au>Zou, Fang</au><au>Yao, Yanbin</au><au>Du, Zhaocai</au><au>Cervantes, Ilse C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant Hough Random Ferns for Object Detection and Tracking</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper introduces an invariant Hough random ferns (IHRF) incorporating rotation and scale invariance into the local feature description, random ferns classifier training, and Hough voting stages. It is especially suited for object detection under changes in object appearance and scale, partial occlusions, and pose variations. The efficacy of this approach is validated through experiments on a large set of challenging benchmark datasets, and the results demonstrate that the proposed method outperforms state-of-the-art conventional methods such as bounding-box-based and part-based methods. Additionally, we also propose an efficient clustering scheme based on the local patches’ appearance and their geometric relations that can provide pixel-accurate, top-down segmentations from IHRF back-projections. This refined segmentation can be used to improve the quality of online object tracking because it avoids the drifting problem. Thus, an online tracking framework based on IHRF, which is trained and updated in each frame to distinguish and segment the object from the background, is established. Finally, the experimental results on both object segmentation and long-term object tracking show that this method yields accurate and robust tracking performance in a variety of complex scenarios, especially in cases of severe occlusions and nonrigid deformations.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2014/513283</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8096-4819</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2014-01, Vol.2014 (2014), p.1-20 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551075822 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Algorithms Clustering Conferences Distance learning Drift Ferns Hypotheses Invariants Laboratories Methods Noise Object recognition Occlusion Online Scale invariance Segmentation Tracking |
title | Invariant Hough Random Ferns for Object Detection and Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20Hough%20Random%20Ferns%20for%20Object%20Detection%20and%20Tracking&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lin,%20Yimin&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2014/513283&rft_dat=%3Cproquest_cross%3E1551075822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564743977&rft_id=info:pmid/&rfr_iscdi=true |