Thermal stresses in a multilayered thin film thermoelectric structure
•A laminate model is presented for multilayered thin film thermoelectric structures.•Thermal, electrical, and mechanical effects are coupled in the model.•The model predicts much higher thermal stress than strength of material model.•Effects of heat transfer at the film surfaces on the thermal stres...
Gespeichert in:
Veröffentlicht in: | Microelectronics and reliability 2014-06, Vol.54 (6-7), p.1363-1368 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1368 |
---|---|
container_issue | 6-7 |
container_start_page | 1363 |
container_title | Microelectronics and reliability |
container_volume | 54 |
creator | Jin, Z.-H. |
description | •A laminate model is presented for multilayered thin film thermoelectric structures.•Thermal, electrical, and mechanical effects are coupled in the model.•The model predicts much higher thermal stress than strength of material model.•Effects of heat transfer at the film surfaces on the thermal stress are examined.•The model provides a better tool in design for thermomechanical reliability.
This work investigates thermally induced stresses and deformations in a multilayered thin film thermoelectric (TE) structure for assessing thermomechanical reliability of the TE devices. The multilayered structure consists of a n-type and p-type thermocouple separated by an insulating layer, and an additional supporting membrane layer. The one-dimensional thermoelectricity is used to compute the temperature distribution with heat transfer by radiation and convection at the film surfaces being considered. The thermoelasticity theory of laminated composites is employed to determine the stresses and deformations in the thin film structure. It is found that the thermal stress calculated using the present laminate model has a significantly higher magnitude than that predicted by the strength of materials model. Effects of heat transfer coefficient at the film surfaces are also examined. |
doi_str_mv | 10.1016/j.microrel.2014.02.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551059941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271414000857</els_id><sourcerecordid>1551059941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-8070fe6e3cd1dfafd7ddfe18fb95d000318e477adef727b12e32a556069db9623</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfYieNk1k_3I7k0p9QMKXip4C2kyoSnZ3ZrsCv33Zmn1KgxkCO8778xDyC3QDChUD7ustcr3Hl3GKBQZZbHqMzKDmrO0KeDznMwoZVXKOBSX5CqEHaWUU4AZWa636FvpkjB4DAFDYrtEJu3oBuvkAT3qZNjGP2NdG7so7tGhGrxVk2dUw-jxmlwY6QLenN45-Xherhev6er95W3xtEpVUcCQ1jHUYIW50qCNNJprbRBqs2lKHVfKocaCc6nRcMY3wDBnsiwrWjV601Qsn5P749y9779GDINobVDonOywH4OAsgRaNvHmKK2O0ogmBI9G7L1tpT8IoGLiJnbil5uYuAnKYtXReHfKkEFJZ7zslA1_blaXZZPnU8DjUYfx4G-LXgRlsVOorY98hO7tf1E_yp-IXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551059941</pqid></control><display><type>article</type><title>Thermal stresses in a multilayered thin film thermoelectric structure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jin, Z.-H.</creator><creatorcontrib>Jin, Z.-H.</creatorcontrib><description>•A laminate model is presented for multilayered thin film thermoelectric structures.•Thermal, electrical, and mechanical effects are coupled in the model.•The model predicts much higher thermal stress than strength of material model.•Effects of heat transfer at the film surfaces on the thermal stress are examined.•The model provides a better tool in design for thermomechanical reliability.
This work investigates thermally induced stresses and deformations in a multilayered thin film thermoelectric (TE) structure for assessing thermomechanical reliability of the TE devices. The multilayered structure consists of a n-type and p-type thermocouple separated by an insulating layer, and an additional supporting membrane layer. The one-dimensional thermoelectricity is used to compute the temperature distribution with heat transfer by radiation and convection at the film surfaces being considered. The thermoelasticity theory of laminated composites is employed to determine the stresses and deformations in the thin film structure. It is found that the thermal stress calculated using the present laminate model has a significantly higher magnitude than that predicted by the strength of materials model. Effects of heat transfer coefficient at the film surfaces are also examined.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2014.02.028</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Deformation ; Electronics ; Exact sciences and technology ; Heat transfer ; Laminates ; Mathematical models ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stresses ; Thermal stresses ; Thermoelectric, pyroelectric devices, etc ; Thermoelectricity ; Thin films</subject><ispartof>Microelectronics and reliability, 2014-06, Vol.54 (6-7), p.1363-1368</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-8070fe6e3cd1dfafd7ddfe18fb95d000318e477adef727b12e32a556069db9623</citedby><cites>FETCH-LOGICAL-c441t-8070fe6e3cd1dfafd7ddfe18fb95d000318e477adef727b12e32a556069db9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0026271414000857$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28559331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Z.-H.</creatorcontrib><title>Thermal stresses in a multilayered thin film thermoelectric structure</title><title>Microelectronics and reliability</title><description>•A laminate model is presented for multilayered thin film thermoelectric structures.•Thermal, electrical, and mechanical effects are coupled in the model.•The model predicts much higher thermal stress than strength of material model.•Effects of heat transfer at the film surfaces on the thermal stress are examined.•The model provides a better tool in design for thermomechanical reliability.
This work investigates thermally induced stresses and deformations in a multilayered thin film thermoelectric (TE) structure for assessing thermomechanical reliability of the TE devices. The multilayered structure consists of a n-type and p-type thermocouple separated by an insulating layer, and an additional supporting membrane layer. The one-dimensional thermoelectricity is used to compute the temperature distribution with heat transfer by radiation and convection at the film surfaces being considered. The thermoelasticity theory of laminated composites is employed to determine the stresses and deformations in the thin film structure. It is found that the thermal stress calculated using the present laminate model has a significantly higher magnitude than that predicted by the strength of materials model. Effects of heat transfer coefficient at the film surfaces are also examined.</description><subject>Applied sciences</subject><subject>Deformation</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Laminates</subject><subject>Mathematical models</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stresses</subject><subject>Thermal stresses</subject><subject>Thermoelectric, pyroelectric devices, etc</subject><subject>Thermoelectricity</subject><subject>Thin films</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfYieNk1k_3I7k0p9QMKXip4C2kyoSnZ3ZrsCv33Zmn1KgxkCO8778xDyC3QDChUD7ustcr3Hl3GKBQZZbHqMzKDmrO0KeDznMwoZVXKOBSX5CqEHaWUU4AZWa636FvpkjB4DAFDYrtEJu3oBuvkAT3qZNjGP2NdG7so7tGhGrxVk2dUw-jxmlwY6QLenN45-Xherhev6er95W3xtEpVUcCQ1jHUYIW50qCNNJprbRBqs2lKHVfKocaCc6nRcMY3wDBnsiwrWjV601Qsn5P749y9779GDINobVDonOywH4OAsgRaNvHmKK2O0ogmBI9G7L1tpT8IoGLiJnbil5uYuAnKYtXReHfKkEFJZ7zslA1_blaXZZPnU8DjUYfx4G-LXgRlsVOorY98hO7tf1E_yp-IXw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Jin, Z.-H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Thermal stresses in a multilayered thin film thermoelectric structure</title><author>Jin, Z.-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-8070fe6e3cd1dfafd7ddfe18fb95d000318e477adef727b12e32a556069db9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Deformation</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Laminates</topic><topic>Mathematical models</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stresses</topic><topic>Thermal stresses</topic><topic>Thermoelectric, pyroelectric devices, etc</topic><topic>Thermoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Z.-H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Z.-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stresses in a multilayered thin film thermoelectric structure</atitle><jtitle>Microelectronics and reliability</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>54</volume><issue>6-7</issue><spage>1363</spage><epage>1368</epage><pages>1363-1368</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>•A laminate model is presented for multilayered thin film thermoelectric structures.•Thermal, electrical, and mechanical effects are coupled in the model.•The model predicts much higher thermal stress than strength of material model.•Effects of heat transfer at the film surfaces on the thermal stress are examined.•The model provides a better tool in design for thermomechanical reliability.
This work investigates thermally induced stresses and deformations in a multilayered thin film thermoelectric (TE) structure for assessing thermomechanical reliability of the TE devices. The multilayered structure consists of a n-type and p-type thermocouple separated by an insulating layer, and an additional supporting membrane layer. The one-dimensional thermoelectricity is used to compute the temperature distribution with heat transfer by radiation and convection at the film surfaces being considered. The thermoelasticity theory of laminated composites is employed to determine the stresses and deformations in the thin film structure. It is found that the thermal stress calculated using the present laminate model has a significantly higher magnitude than that predicted by the strength of materials model. Effects of heat transfer coefficient at the film surfaces are also examined.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2014.02.028</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 2014-06, Vol.54 (6-7), p.1363-1368 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_proquest_miscellaneous_1551059941 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Deformation Electronics Exact sciences and technology Heat transfer Laminates Mathematical models Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stresses Thermal stresses Thermoelectric, pyroelectric devices, etc Thermoelectricity Thin films |
title | Thermal stresses in a multilayered thin film thermoelectric structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stresses%20in%20a%20multilayered%20thin%20film%20thermoelectric%20structure&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Jin,%20Z.-H.&rft.date=2014-06-01&rft.volume=54&rft.issue=6-7&rft.spage=1363&rft.epage=1368&rft.pages=1363-1368&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2014.02.028&rft_dat=%3Cproquest_cross%3E1551059941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551059941&rft_id=info:pmid/&rft_els_id=S0026271414000857&rfr_iscdi=true |