Domination game: Effect of edge- and vertex-removal

The domination game is played on a graph G by two players, named Dominator and Staller. They alternatively select vertices of G such that each chosen vertex enlarges the set of vertices dominated before the move on it. Dominator’s goal is that the game is finished as soon as possible, while Staller ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2014-09, Vol.330, p.1-10
Hauptverfasser: Brešar, Boštjan, Dorbec, Paul, Klavžar, Sandi, Košmrlj, Gašper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Discrete mathematics
container_volume 330
creator Brešar, Boštjan
Dorbec, Paul
Klavžar, Sandi
Košmrlj, Gašper
description The domination game is played on a graph G by two players, named Dominator and Staller. They alternatively select vertices of G such that each chosen vertex enlarges the set of vertices dominated before the move on it. Dominator’s goal is that the game is finished as soon as possible, while Staller wants the game to last as long as possible. It is assumed that both play optimally. Game 1 and Game 2 are variants of the game in which Dominator and Staller has the first move, respectively. The game domination number γg(G) and the Staller-start game domination number γ′(G) are the number of vertices chosen in Game 1 and Game 2, respectively. It is proved that if e∈E(G), then |γg(G)−γg(G−e)|≤2 and |γ′(G)−γ′(G−e)|≤2, and that each of the possibilities here is realizable by connected graphs G for all values of γg(G) and γ′(G) larger than 5. For the remaining small values it is either proved that realizations are not possible or realizing examples are provided. It is also proved that if v∈V(G), then γg(G)−γg(G−v)≤2 and γ′(G)−γ′(G−v)≤2. Possibilities here are again realizable by connected graphs G in almost all the cases, the exceptional values are treated similarly as in the edge-removal case.
doi_str_mv 10.1016/j.disc.2014.04.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551059738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X14001551</els_id><sourcerecordid>1551059738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-70b0ffb27840093f616010e6ab41f28a9b4c65891ce35472b66e25fca01768fd3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU89emmdaZu0FS-i6x9Y8KKwt5CmkyVL26xJd9Fvb5b1LDx4DLw38H6MXSNkCChuN1lng85ywDKDKOQnbIZ1laeixtUpmwFgnhaCr87ZRQgbiLco6hkrntxgRzVZNyZrNdBdsjCG9JQ4k1C3pjRRY5fsyU_0nXoa3F71l-zMqD7Q1Z_P2efz4uPxNV2-v7w9PixTXVTVlFbQgjFtXtUlQFMYgQIQSKi2RJPXqmlLLXjdoKaCl1XeCkE5N1oBVqI2XTFnN8e_W---dhQmOcSR1PdqJLcLEjlH4E1V1DGaH6PauxA8Gbn1dlD-RyLIAyG5kQdC8kBIQhTyWLo_liiO2FvyMmhLo6bO-ohAds7-V_8F6pJtJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551059738</pqid></control><display><type>article</type><title>Domination game: Effect of edge- and vertex-removal</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Brešar, Boštjan ; Dorbec, Paul ; Klavžar, Sandi ; Košmrlj, Gašper</creator><creatorcontrib>Brešar, Boštjan ; Dorbec, Paul ; Klavžar, Sandi ; Košmrlj, Gašper</creatorcontrib><description>The domination game is played on a graph G by two players, named Dominator and Staller. They alternatively select vertices of G such that each chosen vertex enlarges the set of vertices dominated before the move on it. Dominator’s goal is that the game is finished as soon as possible, while Staller wants the game to last as long as possible. It is assumed that both play optimally. Game 1 and Game 2 are variants of the game in which Dominator and Staller has the first move, respectively. The game domination number γg(G) and the Staller-start game domination number γ′(G) are the number of vertices chosen in Game 1 and Game 2, respectively. It is proved that if e∈E(G), then |γg(G)−γg(G−e)|≤2 and |γ′(G)−γ′(G−e)|≤2, and that each of the possibilities here is realizable by connected graphs G for all values of γg(G) and γ′(G) larger than 5. For the remaining small values it is either proved that realizations are not possible or realizing examples are provided. It is also proved that if v∈V(G), then γg(G)−γg(G−v)≤2 and γ′(G)−γ′(G−v)≤2. Possibilities here are again realizable by connected graphs G in almost all the cases, the exceptional values are treated similarly as in the edge-removal case.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2014.04.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Domination game ; Edge-removed subgraph ; Expansion ; Game domination number ; Games ; Graphs ; Mathematical analysis ; Optimization ; Players ; Vertex-removed subgraph</subject><ispartof>Discrete mathematics, 2014-09, Vol.330, p.1-10</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-70b0ffb27840093f616010e6ab41f28a9b4c65891ce35472b66e25fca01768fd3</citedby><cites>FETCH-LOGICAL-c377t-70b0ffb27840093f616010e6ab41f28a9b4c65891ce35472b66e25fca01768fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2014.04.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Dorbec, Paul</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Košmrlj, Gašper</creatorcontrib><title>Domination game: Effect of edge- and vertex-removal</title><title>Discrete mathematics</title><description>The domination game is played on a graph G by two players, named Dominator and Staller. They alternatively select vertices of G such that each chosen vertex enlarges the set of vertices dominated before the move on it. Dominator’s goal is that the game is finished as soon as possible, while Staller wants the game to last as long as possible. It is assumed that both play optimally. Game 1 and Game 2 are variants of the game in which Dominator and Staller has the first move, respectively. The game domination number γg(G) and the Staller-start game domination number γ′(G) are the number of vertices chosen in Game 1 and Game 2, respectively. It is proved that if e∈E(G), then |γg(G)−γg(G−e)|≤2 and |γ′(G)−γ′(G−e)|≤2, and that each of the possibilities here is realizable by connected graphs G for all values of γg(G) and γ′(G) larger than 5. For the remaining small values it is either proved that realizations are not possible or realizing examples are provided. It is also proved that if v∈V(G), then γg(G)−γg(G−v)≤2 and γ′(G)−γ′(G−v)≤2. Possibilities here are again realizable by connected graphs G in almost all the cases, the exceptional values are treated similarly as in the edge-removal case.</description><subject>Domination game</subject><subject>Edge-removed subgraph</subject><subject>Expansion</subject><subject>Game domination number</subject><subject>Games</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Players</subject><subject>Vertex-removed subgraph</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU89emmdaZu0FS-i6x9Y8KKwt5CmkyVL26xJd9Fvb5b1LDx4DLw38H6MXSNkCChuN1lng85ywDKDKOQnbIZ1laeixtUpmwFgnhaCr87ZRQgbiLco6hkrntxgRzVZNyZrNdBdsjCG9JQ4k1C3pjRRY5fsyU_0nXoa3F71l-zMqD7Q1Z_P2efz4uPxNV2-v7w9PixTXVTVlFbQgjFtXtUlQFMYgQIQSKi2RJPXqmlLLXjdoKaCl1XeCkE5N1oBVqI2XTFnN8e_W---dhQmOcSR1PdqJLcLEjlH4E1V1DGaH6PauxA8Gbn1dlD-RyLIAyG5kQdC8kBIQhTyWLo_liiO2FvyMmhLo6bO-ohAds7-V_8F6pJtJw</recordid><startdate>20140906</startdate><enddate>20140906</enddate><creator>Brešar, Boštjan</creator><creator>Dorbec, Paul</creator><creator>Klavžar, Sandi</creator><creator>Košmrlj, Gašper</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140906</creationdate><title>Domination game: Effect of edge- and vertex-removal</title><author>Brešar, Boštjan ; Dorbec, Paul ; Klavžar, Sandi ; Košmrlj, Gašper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-70b0ffb27840093f616010e6ab41f28a9b4c65891ce35472b66e25fca01768fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Domination game</topic><topic>Edge-removed subgraph</topic><topic>Expansion</topic><topic>Game domination number</topic><topic>Games</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Players</topic><topic>Vertex-removed subgraph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Dorbec, Paul</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Košmrlj, Gašper</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brešar, Boštjan</au><au>Dorbec, Paul</au><au>Klavžar, Sandi</au><au>Košmrlj, Gašper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domination game: Effect of edge- and vertex-removal</atitle><jtitle>Discrete mathematics</jtitle><date>2014-09-06</date><risdate>2014</risdate><volume>330</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>The domination game is played on a graph G by two players, named Dominator and Staller. They alternatively select vertices of G such that each chosen vertex enlarges the set of vertices dominated before the move on it. Dominator’s goal is that the game is finished as soon as possible, while Staller wants the game to last as long as possible. It is assumed that both play optimally. Game 1 and Game 2 are variants of the game in which Dominator and Staller has the first move, respectively. The game domination number γg(G) and the Staller-start game domination number γ′(G) are the number of vertices chosen in Game 1 and Game 2, respectively. It is proved that if e∈E(G), then |γg(G)−γg(G−e)|≤2 and |γ′(G)−γ′(G−e)|≤2, and that each of the possibilities here is realizable by connected graphs G for all values of γg(G) and γ′(G) larger than 5. For the remaining small values it is either proved that realizations are not possible or realizing examples are provided. It is also proved that if v∈V(G), then γg(G)−γg(G−v)≤2 and γ′(G)−γ′(G−v)≤2. Possibilities here are again realizable by connected graphs G in almost all the cases, the exceptional values are treated similarly as in the edge-removal case.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2014.04.015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2014-09, Vol.330, p.1-10
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1551059738
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Domination game
Edge-removed subgraph
Expansion
Game domination number
Games
Graphs
Mathematical analysis
Optimization
Players
Vertex-removed subgraph
title Domination game: Effect of edge- and vertex-removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domination%20game:%20Effect%20of%20edge-%20and%20vertex-removal&rft.jtitle=Discrete%20mathematics&rft.au=Bre%C5%A1ar,%20Bo%C5%A1tjan&rft.date=2014-09-06&rft.volume=330&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2014.04.015&rft_dat=%3Cproquest_cross%3E1551059738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551059738&rft_id=info:pmid/&rft_els_id=S0012365X14001551&rfr_iscdi=true