Non-collaborative content detecting on video sharing social networks

In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2014-05, Vol.70 (2), p.1049-1067
Hauptverfasser: da Luz, Antonio, Valle, Eduardo, de A. Araújo, Arnaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 2
container_start_page 1049
container_title Multimedia tools and applications
container_volume 70
creator da Luz, Antonio
Valle, Eduardo
de A. Araújo, Arnaldo
description In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of the high-level semantic concepts involved; of the assorted nature of social networks, preventing the use of constrained a priori information; and, which is paramount, of the context-dependent nature of non-collaborative videos. Content filtering for social networks is an increasingly demanded task: due to their popularity, the number of abuses also tends to increase, annoying the user and disrupting their services. We propose two approaches, each one better adapted to a specific non-collaborative action: ballot stuffing, which tries to inflate the popularity of a given video by giving “fake” responses to it, and spamming, which tries to insert a non-related video as a response in popular videos. We endorse the use of low-level features combined into higher-level features representation, like bag-of-visual-features and latent semantic analysis. Our experiments show the feasibility of the proposed approaches.
doi_str_mv 10.1007/s11042-012-1198-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551059261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551059261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-1d14f85b60beccd0fc89758111d38b54e95d34ac593096fb56685ebec8adb5233</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM02TpkdZP2HRi55DmqbatZusSXbFf29LPYjgaYbheV-Gh5BThAsEKC8jIhQ5BcwpYiWp2CMz5CWjZZnj_rAzCbTkgIfkKMYVAAqeFzNy_egdNb7vde2DTt3OZsa7ZF3KGpusSZ17zbzLdl1jfRbfdBgP0ZtO95mz6dOH93hMDlrdR3vyM-fk5fbmeXFPl093D4urJTUMMFFssGglrwXU1pgGWiOrkktEbJiseWEr3rBCG14xqERbcyEktwMrdVPznLE5OZ96N8F_bG1Mat1FY4fnnfXbqJBzBF7lAgf07A-68tvghu8UlgIlcgljIU6UCT7GYFu1Cd1ahy-FoEavavKqBq9q9KrEkMmnTNyMLmz41fxv6BtUeno-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761815803</pqid></control><display><type>article</type><title>Non-collaborative content detecting on video sharing social networks</title><source>Springer Nature - Complete Springer Journals</source><creator>da Luz, Antonio ; Valle, Eduardo ; de A. Araújo, Arnaldo</creator><creatorcontrib>da Luz, Antonio ; Valle, Eduardo ; de A. Araújo, Arnaldo</creatorcontrib><description>In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of the high-level semantic concepts involved; of the assorted nature of social networks, preventing the use of constrained a priori information; and, which is paramount, of the context-dependent nature of non-collaborative videos. Content filtering for social networks is an increasingly demanded task: due to their popularity, the number of abuses also tends to increase, annoying the user and disrupting their services. We propose two approaches, each one better adapted to a specific non-collaborative action: ballot stuffing, which tries to inflate the popularity of a given video by giving “fake” responses to it, and spamming, which tries to insert a non-related video as a response in popular videos. We endorse the use of low-level features combined into higher-level features representation, like bag-of-visual-features and latent semantic analysis. Our experiments show the feasibility of the proposed approaches.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-012-1198-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Classification ; Collaboration ; Computer Communication Networks ; Computer Science ; Content management ; Data Structures and Information Theory ; Digital video ; Elections ; Filtering ; Metadata ; Multimedia ; Multimedia Information Systems ; Popularity ; Representations ; Semantic analysis ; Semantics ; Social networks ; Spamming ; Special Purpose and Application-Based Systems ; Studies ; Tasks ; Virtual communities ; Visual</subject><ispartof>Multimedia tools and applications, 2014-05, Vol.70 (2), p.1049-1067</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-1d14f85b60beccd0fc89758111d38b54e95d34ac593096fb56685ebec8adb5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-012-1198-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-012-1198-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>da Luz, Antonio</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>de A. Araújo, Arnaldo</creatorcontrib><title>Non-collaborative content detecting on video sharing social networks</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of the high-level semantic concepts involved; of the assorted nature of social networks, preventing the use of constrained a priori information; and, which is paramount, of the context-dependent nature of non-collaborative videos. Content filtering for social networks is an increasingly demanded task: due to their popularity, the number of abuses also tends to increase, annoying the user and disrupting their services. We propose two approaches, each one better adapted to a specific non-collaborative action: ballot stuffing, which tries to inflate the popularity of a given video by giving “fake” responses to it, and spamming, which tries to insert a non-related video as a response in popular videos. We endorse the use of low-level features combined into higher-level features representation, like bag-of-visual-features and latent semantic analysis. Our experiments show the feasibility of the proposed approaches.</description><subject>Analysis</subject><subject>Classification</subject><subject>Collaboration</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Content management</subject><subject>Data Structures and Information Theory</subject><subject>Digital video</subject><subject>Elections</subject><subject>Filtering</subject><subject>Metadata</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Popularity</subject><subject>Representations</subject><subject>Semantic analysis</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Spamming</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Studies</subject><subject>Tasks</subject><subject>Virtual communities</subject><subject>Visual</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM02TpkdZP2HRi55DmqbatZusSXbFf29LPYjgaYbheV-Gh5BThAsEKC8jIhQ5BcwpYiWp2CMz5CWjZZnj_rAzCbTkgIfkKMYVAAqeFzNy_egdNb7vde2DTt3OZsa7ZF3KGpusSZ17zbzLdl1jfRbfdBgP0ZtO95mz6dOH93hMDlrdR3vyM-fk5fbmeXFPl093D4urJTUMMFFssGglrwXU1pgGWiOrkktEbJiseWEr3rBCG14xqERbcyEktwMrdVPznLE5OZ96N8F_bG1Mat1FY4fnnfXbqJBzBF7lAgf07A-68tvghu8UlgIlcgljIU6UCT7GYFu1Cd1ahy-FoEavavKqBq9q9KrEkMmnTNyMLmz41fxv6BtUeno-</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>da Luz, Antonio</creator><creator>Valle, Eduardo</creator><creator>de A. Araújo, Arnaldo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140501</creationdate><title>Non-collaborative content detecting on video sharing social networks</title><author>da Luz, Antonio ; Valle, Eduardo ; de A. Araújo, Arnaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-1d14f85b60beccd0fc89758111d38b54e95d34ac593096fb56685ebec8adb5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Classification</topic><topic>Collaboration</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Content management</topic><topic>Data Structures and Information Theory</topic><topic>Digital video</topic><topic>Elections</topic><topic>Filtering</topic><topic>Metadata</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Popularity</topic><topic>Representations</topic><topic>Semantic analysis</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Spamming</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Studies</topic><topic>Tasks</topic><topic>Virtual communities</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Luz, Antonio</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>de A. Araújo, Arnaldo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Luz, Antonio</au><au>Valle, Eduardo</au><au>de A. Araújo, Arnaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-collaborative content detecting on video sharing social networks</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>70</volume><issue>2</issue><spage>1049</spage><epage>1067</epage><pages>1049-1067</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of the high-level semantic concepts involved; of the assorted nature of social networks, preventing the use of constrained a priori information; and, which is paramount, of the context-dependent nature of non-collaborative videos. Content filtering for social networks is an increasingly demanded task: due to their popularity, the number of abuses also tends to increase, annoying the user and disrupting their services. We propose two approaches, each one better adapted to a specific non-collaborative action: ballot stuffing, which tries to inflate the popularity of a given video by giving “fake” responses to it, and spamming, which tries to insert a non-related video as a response in popular videos. We endorse the use of low-level features combined into higher-level features representation, like bag-of-visual-features and latent semantic analysis. Our experiments show the feasibility of the proposed approaches.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11042-012-1198-6</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2014-05, Vol.70 (2), p.1049-1067
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_miscellaneous_1551059261
source Springer Nature - Complete Springer Journals
subjects Analysis
Classification
Collaboration
Computer Communication Networks
Computer Science
Content management
Data Structures and Information Theory
Digital video
Elections
Filtering
Metadata
Multimedia
Multimedia Information Systems
Popularity
Representations
Semantic analysis
Semantics
Social networks
Spamming
Special Purpose and Application-Based Systems
Studies
Tasks
Virtual communities
Visual
title Non-collaborative content detecting on video sharing social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-collaborative%20content%20detecting%20on%20video%20sharing%20social%20networks&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=da%20Luz,%20Antonio&rft.date=2014-05-01&rft.volume=70&rft.issue=2&rft.spage=1049&rft.epage=1067&rft.pages=1049-1067&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-012-1198-6&rft_dat=%3Cproquest_cross%3E1551059261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761815803&rft_id=info:pmid/&rfr_iscdi=true