Dispersion equation for ballooning modes in two-component plasma

The ballooning magnetohydrodynamic (MHD) modes have been often suggested as a possible instability trigger of the substorm onset, and a mechanism of compressional waves in the outer magnetosphere and magnetotail. Commonly, these disturbances are characterized by the local dispersion equation that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2014-06, Vol.80 (3), p.379-393
Hauptverfasser: Kozlov, D. A., Mazur, N. G., Pilipenko, V. A., Fedorov, E. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 3
container_start_page 379
container_title Journal of plasma physics
container_volume 80
creator Kozlov, D. A.
Mazur, N. G.
Pilipenko, V. A.
Fedorov, E. N.
description The ballooning magnetohydrodynamic (MHD) modes have been often suggested as a possible instability trigger of the substorm onset, and a mechanism of compressional waves in the outer magnetosphere and magnetotail. Commonly, these disturbances are characterized by the local dispersion equation that is widely applied for the description of ultra-low-frequency oscillatory disturbances and instabilities in the nightside magnetosphere. In realistic situations, especially in the inner magnetosphere, the magnetospheric plasma is composed of two components: background ‘cold’ plasma and ‘hot’ particles. The ballooning disturbances in a two-component plasma immersed into a curved magnetic field are described with the system of coupled equations for the Alfvén and slow magnetosonic (SMS) modes. We have reduced the basic system of MHD equations to the dispersion equation for the small-scale in transverse direction disturbances, and applied WKB approximation along a field line. As a result, we have derived a dispersion equation that can be used for geophysical applications. In particular, from this relationship the dispersion, instability threshold, and stop-bands of the Alfvén and SMS modes in two-component plasma have been examined.
doi_str_mv 10.1017/S0022377813001347
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551052744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377813001347</cupid><sourcerecordid>3282234491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-12083b65081396fbd8a76e93bdae4743fa6ac03e9d5996ca8aa94ce151a3231d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FL16qM03StDfF_7DgQT2XaZsuWdqkm7SI396W3YMonmbg_d7j8Rg7R7hCQHX9BpAkXKkMOQByoQ7YAkWaxyoDdcgWsxzP-jE7CWEDABwStWA39yb02gfjbKS3Iw3z0zgfldS2zllj11Hnah0iY6Ph08WV63pntR2ivqXQ0Sk7aqgN-mx_l-zj8eH97jlevT693N2u4opLGGJMIONlKmEqmKdNWWekUp3zsiYtlOANpVQB13kt8zytKCPKRaVRIvGEY82X7HKX23u3HXUYis6ESrctWe3GUKCUCDJRQkzoxS9040Zvp3YThVkiQEo5UbijKu9C8Lopem868l8FQjFvWvzZdPLwvYe60pt6rX9E_-v6BvrOd1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518240555</pqid></control><display><type>article</type><title>Dispersion equation for ballooning modes in two-component plasma</title><source>Cambridge University Press Journals Complete</source><creator>Kozlov, D. A. ; Mazur, N. G. ; Pilipenko, V. A. ; Fedorov, E. N.</creator><creatorcontrib>Kozlov, D. A. ; Mazur, N. G. ; Pilipenko, V. A. ; Fedorov, E. N.</creatorcontrib><description>The ballooning magnetohydrodynamic (MHD) modes have been often suggested as a possible instability trigger of the substorm onset, and a mechanism of compressional waves in the outer magnetosphere and magnetotail. Commonly, these disturbances are characterized by the local dispersion equation that is widely applied for the description of ultra-low-frequency oscillatory disturbances and instabilities in the nightside magnetosphere. In realistic situations, especially in the inner magnetosphere, the magnetospheric plasma is composed of two components: background ‘cold’ plasma and ‘hot’ particles. The ballooning disturbances in a two-component plasma immersed into a curved magnetic field are described with the system of coupled equations for the Alfvén and slow magnetosonic (SMS) modes. We have reduced the basic system of MHD equations to the dispersion equation for the small-scale in transverse direction disturbances, and applied WKB approximation along a field line. As a result, we have derived a dispersion equation that can be used for geophysical applications. In particular, from this relationship the dispersion, instability threshold, and stop-bands of the Alfvén and SMS modes in two-component plasma have been examined.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377813001347</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dispersions ; Disturbances ; Geophysics ; Instability ; Magnetic fields ; Magnetohydrodynamics ; Magnetospheres ; Mathematical analysis ; MHD ; Plasma physics ; Stability</subject><ispartof>Journal of plasma physics, 2014-06, Vol.80 (3), p.379-393</ispartof><rights>Copyright © Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-12083b65081396fbd8a76e93bdae4743fa6ac03e9d5996ca8aa94ce151a3231d3</citedby><cites>FETCH-LOGICAL-c350t-12083b65081396fbd8a76e93bdae4743fa6ac03e9d5996ca8aa94ce151a3231d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377813001347/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Kozlov, D. A.</creatorcontrib><creatorcontrib>Mazur, N. G.</creatorcontrib><creatorcontrib>Pilipenko, V. A.</creatorcontrib><creatorcontrib>Fedorov, E. N.</creatorcontrib><title>Dispersion equation for ballooning modes in two-component plasma</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>The ballooning magnetohydrodynamic (MHD) modes have been often suggested as a possible instability trigger of the substorm onset, and a mechanism of compressional waves in the outer magnetosphere and magnetotail. Commonly, these disturbances are characterized by the local dispersion equation that is widely applied for the description of ultra-low-frequency oscillatory disturbances and instabilities in the nightside magnetosphere. In realistic situations, especially in the inner magnetosphere, the magnetospheric plasma is composed of two components: background ‘cold’ plasma and ‘hot’ particles. The ballooning disturbances in a two-component plasma immersed into a curved magnetic field are described with the system of coupled equations for the Alfvén and slow magnetosonic (SMS) modes. We have reduced the basic system of MHD equations to the dispersion equation for the small-scale in transverse direction disturbances, and applied WKB approximation along a field line. As a result, we have derived a dispersion equation that can be used for geophysical applications. In particular, from this relationship the dispersion, instability threshold, and stop-bands of the Alfvén and SMS modes in two-component plasma have been examined.</description><subject>Dispersions</subject><subject>Disturbances</subject><subject>Geophysics</subject><subject>Instability</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Magnetospheres</subject><subject>Mathematical analysis</subject><subject>MHD</subject><subject>Plasma physics</subject><subject>Stability</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8FL16qM03StDfF_7DgQT2XaZsuWdqkm7SI396W3YMonmbg_d7j8Rg7R7hCQHX9BpAkXKkMOQByoQ7YAkWaxyoDdcgWsxzP-jE7CWEDABwStWA39yb02gfjbKS3Iw3z0zgfldS2zllj11Hnah0iY6Ph08WV63pntR2ivqXQ0Sk7aqgN-mx_l-zj8eH97jlevT693N2u4opLGGJMIONlKmEqmKdNWWekUp3zsiYtlOANpVQB13kt8zytKCPKRaVRIvGEY82X7HKX23u3HXUYis6ESrctWe3GUKCUCDJRQkzoxS9040Zvp3YThVkiQEo5UbijKu9C8Lopem868l8FQjFvWvzZdPLwvYe60pt6rX9E_-v6BvrOd1w</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kozlov, D. A.</creator><creator>Mazur, N. G.</creator><creator>Pilipenko, V. A.</creator><creator>Fedorov, E. N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>Dispersion equation for ballooning modes in two-component plasma</title><author>Kozlov, D. A. ; Mazur, N. G. ; Pilipenko, V. A. ; Fedorov, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-12083b65081396fbd8a76e93bdae4743fa6ac03e9d5996ca8aa94ce151a3231d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dispersions</topic><topic>Disturbances</topic><topic>Geophysics</topic><topic>Instability</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Magnetospheres</topic><topic>Mathematical analysis</topic><topic>MHD</topic><topic>Plasma physics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlov, D. A.</creatorcontrib><creatorcontrib>Mazur, N. G.</creatorcontrib><creatorcontrib>Pilipenko, V. A.</creatorcontrib><creatorcontrib>Fedorov, E. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlov, D. A.</au><au>Mazur, N. G.</au><au>Pilipenko, V. A.</au><au>Fedorov, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion equation for ballooning modes in two-component plasma</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>80</volume><issue>3</issue><spage>379</spage><epage>393</epage><pages>379-393</pages><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>The ballooning magnetohydrodynamic (MHD) modes have been often suggested as a possible instability trigger of the substorm onset, and a mechanism of compressional waves in the outer magnetosphere and magnetotail. Commonly, these disturbances are characterized by the local dispersion equation that is widely applied for the description of ultra-low-frequency oscillatory disturbances and instabilities in the nightside magnetosphere. In realistic situations, especially in the inner magnetosphere, the magnetospheric plasma is composed of two components: background ‘cold’ plasma and ‘hot’ particles. The ballooning disturbances in a two-component plasma immersed into a curved magnetic field are described with the system of coupled equations for the Alfvén and slow magnetosonic (SMS) modes. We have reduced the basic system of MHD equations to the dispersion equation for the small-scale in transverse direction disturbances, and applied WKB approximation along a field line. As a result, we have derived a dispersion equation that can be used for geophysical applications. In particular, from this relationship the dispersion, instability threshold, and stop-bands of the Alfvén and SMS modes in two-component plasma have been examined.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377813001347</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2014-06, Vol.80 (3), p.379-393
issn 0022-3778
1469-7807
language eng
recordid cdi_proquest_miscellaneous_1551052744
source Cambridge University Press Journals Complete
subjects Dispersions
Disturbances
Geophysics
Instability
Magnetic fields
Magnetohydrodynamics
Magnetospheres
Mathematical analysis
MHD
Plasma physics
Stability
title Dispersion equation for ballooning modes in two-component plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20equation%20for%20ballooning%20modes%20in%20two-component%20plasma&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Kozlov,%20D.%20A.&rft.date=2014-06-01&rft.volume=80&rft.issue=3&rft.spage=379&rft.epage=393&rft.pages=379-393&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377813001347&rft_dat=%3Cproquest_cross%3E3282234491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518240555&rft_id=info:pmid/&rft_cupid=10_1017_S0022377813001347&rfr_iscdi=true