N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability

Although graphene can be easily p‐doped by various adsorbates, developing stable n‐doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution‐processed (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2014-05, Vol.10 (10), p.1999-2005
Hauptverfasser: Xu, Wentao, Lim, Tae-Seok, Seo, Hong-Kyu, Min, Sung-Yong, Cho, Himchan, Park, Min-Ho, Kim, Young-Hoon, Lee, Tae-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2005
container_issue 10
container_start_page 1999
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 10
creator Xu, Wentao
Lim, Tae-Seok
Seo, Hong-Kyu
Min, Sung-Yong
Cho, Himchan
Park, Min-Ho
Kim, Young-Hoon
Lee, Tae-Woo
description Although graphene can be easily p‐doped by various adsorbates, developing stable n‐doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution‐processed (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI) on chemical‐vapor‐deposited (CVD) graphene. Strong n‐type doping is confirmed by Raman spectroscopy and the electrical transport characteristics of graphene field‐effect transistors. The strong n‐type doping effect shifts the Dirac point to around ‐140 V. Appropriate annealing at a low temperature of 80 ºC enables an enhanced electron mobility of 1150 cm2 V−1 s−1. The work function and its uniformity on a large scale (1.2 mm × 1.2 mm) of the doped surface are evaluated using ultraviolet photoelectron spectroscopy and Kelvin probe mapping. Stable electrical properties are observed in a device aged in air for more than one month. The doping effect of solution‐processed N‐DMBI molecules on CVD‐grown graphene is investigated. The strong n‐type doping shifts the Dirac point of graphene to around ‐140 V. A electron mobility of 1150 cm2 V−1 s−1 is obtained. The doping effect is uniform on a large scale and stable in the air.
doi_str_mv 10.1002/smll.201303768
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551051737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551051737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4448-99c35df19818ac18fbd30fc8e84e9ae978b0782de2d00cc9ffd4ae9db0eb29e23</originalsourceid><addsrcrecordid>eNqNkU1vEzEURS1ERUthyxKNxIbNBH_NjL0sJU1BaVkkCAkWlsd-VlycmWBP1Obf19GUqOqmrGy9d-6Vng5C7wieEIzpp7QOYUIxYZg1tXiBTkhNWFkLKl8e_gQfo9cp3WDMCOXNK3RMeU1qKuQJ-n1dfuk3YItZ1JsVdFBceAi2nDoHZiiWUXfJp6GPqbj1w6qYdivdmcxPQ97Hviuu-tYHP-wK3dnizMdyMehx8gYdOR0SvH14T9GPi-ny_LKcf599PT-bl4ZzLkopDausI1IQoQ0RrrUMOyNAcJAaZCNa3AhqgVqMjZHOWZ7HtsXQUgmUnaKPY-8m9n-3kAa19slACLqDfpsUqSqCK9Kw5j9Q2jDaUFxn9MMT9Kbfxi4fsqcqySmTIlOTkTKxTymCU5vo1zruFMFqb0jtDamDoRx4_1C7bddgD_g_JRmQI3DrA-yeqVOLq_n8cXk5ZrMyuDtkdfyj6nx-pX5ezxRdfv71bVFxdcnuAbsSq-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525942398</pqid></control><display><type>article</type><title>N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Wentao ; Lim, Tae-Seok ; Seo, Hong-Kyu ; Min, Sung-Yong ; Cho, Himchan ; Park, Min-Ho ; Kim, Young-Hoon ; Lee, Tae-Woo</creator><creatorcontrib>Xu, Wentao ; Lim, Tae-Seok ; Seo, Hong-Kyu ; Min, Sung-Yong ; Cho, Himchan ; Park, Min-Ho ; Kim, Young-Hoon ; Lee, Tae-Woo</creatorcontrib><description>Although graphene can be easily p‐doped by various adsorbates, developing stable n‐doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution‐processed (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI) on chemical‐vapor‐deposited (CVD) graphene. Strong n‐type doping is confirmed by Raman spectroscopy and the electrical transport characteristics of graphene field‐effect transistors. The strong n‐type doping effect shifts the Dirac point to around ‐140 V. Appropriate annealing at a low temperature of 80 ºC enables an enhanced electron mobility of 1150 cm2 V−1 s−1. The work function and its uniformity on a large scale (1.2 mm × 1.2 mm) of the doped surface are evaluated using ultraviolet photoelectron spectroscopy and Kelvin probe mapping. Stable electrical properties are observed in a device aged in air for more than one month. The doping effect of solution‐processed N‐DMBI molecules on CVD‐grown graphene is investigated. The strong n‐type doping shifts the Dirac point of graphene to around ‐140 V. A electron mobility of 1150 cm2 V−1 s−1 is obtained. The doping effect is uniform on a large scale and stable in the air.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201303768</identifier><identifier>PMID: 24616289</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>carrier mobility ; Devices ; dirac point ; Doping ; Electrical properties ; Electron mobility ; Field effect transistors ; Graphene ; graphene field-effect transistor ; n-type doping ; Nanotechnology ; Semiconductor devices</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2014-05, Vol.10 (10), p.1999-2005</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4448-99c35df19818ac18fbd30fc8e84e9ae978b0782de2d00cc9ffd4ae9db0eb29e23</citedby><cites>FETCH-LOGICAL-c4448-99c35df19818ac18fbd30fc8e84e9ae978b0782de2d00cc9ffd4ae9db0eb29e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201303768$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201303768$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24616289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wentao</creatorcontrib><creatorcontrib>Lim, Tae-Seok</creatorcontrib><creatorcontrib>Seo, Hong-Kyu</creatorcontrib><creatorcontrib>Min, Sung-Yong</creatorcontrib><creatorcontrib>Cho, Himchan</creatorcontrib><creatorcontrib>Park, Min-Ho</creatorcontrib><creatorcontrib>Kim, Young-Hoon</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><title>N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Although graphene can be easily p‐doped by various adsorbates, developing stable n‐doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution‐processed (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI) on chemical‐vapor‐deposited (CVD) graphene. Strong n‐type doping is confirmed by Raman spectroscopy and the electrical transport characteristics of graphene field‐effect transistors. The strong n‐type doping effect shifts the Dirac point to around ‐140 V. Appropriate annealing at a low temperature of 80 ºC enables an enhanced electron mobility of 1150 cm2 V−1 s−1. The work function and its uniformity on a large scale (1.2 mm × 1.2 mm) of the doped surface are evaluated using ultraviolet photoelectron spectroscopy and Kelvin probe mapping. Stable electrical properties are observed in a device aged in air for more than one month. The doping effect of solution‐processed N‐DMBI molecules on CVD‐grown graphene is investigated. The strong n‐type doping shifts the Dirac point of graphene to around ‐140 V. A electron mobility of 1150 cm2 V−1 s−1 is obtained. The doping effect is uniform on a large scale and stable in the air.</description><subject>carrier mobility</subject><subject>Devices</subject><subject>dirac point</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Electron mobility</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>graphene field-effect transistor</subject><subject>n-type doping</subject><subject>Nanotechnology</subject><subject>Semiconductor devices</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEURS1ERUthyxKNxIbNBH_NjL0sJU1BaVkkCAkWlsd-VlycmWBP1Obf19GUqOqmrGy9d-6Vng5C7wieEIzpp7QOYUIxYZg1tXiBTkhNWFkLKl8e_gQfo9cp3WDMCOXNK3RMeU1qKuQJ-n1dfuk3YItZ1JsVdFBceAi2nDoHZiiWUXfJp6GPqbj1w6qYdivdmcxPQ97Hviuu-tYHP-wK3dnizMdyMehx8gYdOR0SvH14T9GPi-ny_LKcf599PT-bl4ZzLkopDausI1IQoQ0RrrUMOyNAcJAaZCNa3AhqgVqMjZHOWZ7HtsXQUgmUnaKPY-8m9n-3kAa19slACLqDfpsUqSqCK9Kw5j9Q2jDaUFxn9MMT9Kbfxi4fsqcqySmTIlOTkTKxTymCU5vo1zruFMFqb0jtDamDoRx4_1C7bddgD_g_JRmQI3DrA-yeqVOLq_n8cXk5ZrMyuDtkdfyj6nx-pX5ezxRdfv71bVFxdcnuAbsSq-4</recordid><startdate>20140528</startdate><enddate>20140528</enddate><creator>Xu, Wentao</creator><creator>Lim, Tae-Seok</creator><creator>Seo, Hong-Kyu</creator><creator>Min, Sung-Yong</creator><creator>Cho, Himchan</creator><creator>Park, Min-Ho</creator><creator>Kim, Young-Hoon</creator><creator>Lee, Tae-Woo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140528</creationdate><title>N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability</title><author>Xu, Wentao ; Lim, Tae-Seok ; Seo, Hong-Kyu ; Min, Sung-Yong ; Cho, Himchan ; Park, Min-Ho ; Kim, Young-Hoon ; Lee, Tae-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4448-99c35df19818ac18fbd30fc8e84e9ae978b0782de2d00cc9ffd4ae9db0eb29e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>carrier mobility</topic><topic>Devices</topic><topic>dirac point</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Electron mobility</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>graphene field-effect transistor</topic><topic>n-type doping</topic><topic>Nanotechnology</topic><topic>Semiconductor devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wentao</creatorcontrib><creatorcontrib>Lim, Tae-Seok</creatorcontrib><creatorcontrib>Seo, Hong-Kyu</creatorcontrib><creatorcontrib>Min, Sung-Yong</creatorcontrib><creatorcontrib>Cho, Himchan</creatorcontrib><creatorcontrib>Park, Min-Ho</creatorcontrib><creatorcontrib>Kim, Young-Hoon</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wentao</au><au>Lim, Tae-Seok</au><au>Seo, Hong-Kyu</au><au>Min, Sung-Yong</au><au>Cho, Himchan</au><au>Park, Min-Ho</au><au>Kim, Young-Hoon</au><au>Lee, Tae-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2014-05-28</date><risdate>2014</risdate><volume>10</volume><issue>10</issue><spage>1999</spage><epage>2005</epage><pages>1999-2005</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Although graphene can be easily p‐doped by various adsorbates, developing stable n‐doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution‐processed (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI) on chemical‐vapor‐deposited (CVD) graphene. Strong n‐type doping is confirmed by Raman spectroscopy and the electrical transport characteristics of graphene field‐effect transistors. The strong n‐type doping effect shifts the Dirac point to around ‐140 V. Appropriate annealing at a low temperature of 80 ºC enables an enhanced electron mobility of 1150 cm2 V−1 s−1. The work function and its uniformity on a large scale (1.2 mm × 1.2 mm) of the doped surface are evaluated using ultraviolet photoelectron spectroscopy and Kelvin probe mapping. Stable electrical properties are observed in a device aged in air for more than one month. The doping effect of solution‐processed N‐DMBI molecules on CVD‐grown graphene is investigated. The strong n‐type doping shifts the Dirac point of graphene to around ‐140 V. A electron mobility of 1150 cm2 V−1 s−1 is obtained. The doping effect is uniform on a large scale and stable in the air.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24616289</pmid><doi>10.1002/smll.201303768</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2014-05, Vol.10 (10), p.1999-2005
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1551051737
source Wiley Online Library Journals Frontfile Complete
subjects carrier mobility
Devices
dirac point
Doping
Electrical properties
Electron mobility
Field effect transistors
Graphene
graphene field-effect transistor
n-type doping
Nanotechnology
Semiconductor devices
title N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-Doped%20Graphene%20Field-Effect%20Transistors%20with%20Enhanced%20Electron%20Mobility%20and%20Air-Stability&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xu,%20Wentao&rft.date=2014-05-28&rft.volume=10&rft.issue=10&rft.spage=1999&rft.epage=2005&rft.pages=1999-2005&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201303768&rft_dat=%3Cproquest_cross%3E1551051737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1525942398&rft_id=info:pmid/24616289&rfr_iscdi=true