Giant magneto-impedance effect in thin Finemet nanocrystalline microwires

We studied giant magneto‐impedance (GMI) effect, magnetic and structural properties of thin Finemet‐type (FeCuNbSiB) glass‐coated microwires fabricated by Taylor‐Ulitovsky technique with different composition and diameters, with the aim to achieve the optimal conditions for improving the final GMI r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2014-05, Vol.11 (5-6), p.1120-1124
Hauptverfasser: Talaat, A., Ipatov, M., Zhukova, V., Blanco, J. M., Churyukanova, M., Kaloshkin, S., Zhukov, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1124
container_issue 5-6
container_start_page 1120
container_title Physica status solidi. C
container_volume 11
creator Talaat, A.
Ipatov, M.
Zhukova, V.
Blanco, J. M.
Churyukanova, M.
Kaloshkin, S.
Zhukov, A.
description We studied giant magneto‐impedance (GMI) effect, magnetic and structural properties of thin Finemet‐type (FeCuNbSiB) glass‐coated microwires fabricated by Taylor‐Ulitovsky technique with different composition and diameters, with the aim to achieve the optimal conditions for improving the final GMI response. We observed that GMI can be tailored either by controlling the microwires microstructure through the thermal annealing, or by controlling the quenching rate velocity during the fabrication processes. Finally, we obtained up to 50% GMI in the as‐prepared samples and up to 100% in annealed microwires. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.201300708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551051042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551051042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-5936c92b0adeb719033a773b369b9de123d16e40d207b6de52564321b4d414e43</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4soOKdXzwUvXjpfkiZtjzrcHAx_UN2OIW3fNLNNZ9Ix99-bMRHxIoTkET6fx3vfIDgnMCAA9GrlXDmgQBhAAulB0COCQERETA99nQoaCcbJcXDi3BKAcSCiF0zGWpkubNSrwa6NdLPCSpkSQ1wssOxCbcLuzV8jbbDBLjTKtKXduk7Vtf8KG13adqMtutPgaKFqh2ffbz94Gd0-D--i6cN4MryeRiVL0zTiGRNlRgtQFRYJyYAxlSSsYCIrsgoJZRURGENFISlEhZxyETNKiriKSYwx6weX-74r236s0XWy0a7EulYG27WThHMC_sTUoxd_0GW7tsZP5ynKE87TdNdwsKf8Js5ZXMiV1Y2yW0lA7pKVu2TlT7JeyPbCRte4_YeWj3k-_O1Ge1e7Dj9_XGXfpUhYwuX8fiznOWOzm3wmn9gXyg6LOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525755884</pqid></control><display><type>article</type><title>Giant magneto-impedance effect in thin Finemet nanocrystalline microwires</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Talaat, A. ; Ipatov, M. ; Zhukova, V. ; Blanco, J. M. ; Churyukanova, M. ; Kaloshkin, S. ; Zhukov, A.</creator><creatorcontrib>Talaat, A. ; Ipatov, M. ; Zhukova, V. ; Blanco, J. M. ; Churyukanova, M. ; Kaloshkin, S. ; Zhukov, A.</creatorcontrib><description>We studied giant magneto‐impedance (GMI) effect, magnetic and structural properties of thin Finemet‐type (FeCuNbSiB) glass‐coated microwires fabricated by Taylor‐Ulitovsky technique with different composition and diameters, with the aim to achieve the optimal conditions for improving the final GMI response. We observed that GMI can be tailored either by controlling the microwires microstructure through the thermal annealing, or by controlling the quenching rate velocity during the fabrication processes. Finally, we obtained up to 50% GMI in the as‐prepared samples and up to 100% in annealed microwires. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201300708</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Annealing ; Composition effects ; Ferrous alloys ; giant magnetoimpedance ; magnetoelastic anisotropy ; Magnetoimpedance ; metallic glasses ; microwires ; nanocrystalline materials ; Nanocrystals ; nanograins ; Optimization ; Quenching ; Solid state physics</subject><ispartof>Physica status solidi. C, 2014-05, Vol.11 (5-6), p.1120-1124</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-5936c92b0adeb719033a773b369b9de123d16e40d207b6de52564321b4d414e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201300708$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201300708$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Talaat, A.</creatorcontrib><creatorcontrib>Ipatov, M.</creatorcontrib><creatorcontrib>Zhukova, V.</creatorcontrib><creatorcontrib>Blanco, J. M.</creatorcontrib><creatorcontrib>Churyukanova, M.</creatorcontrib><creatorcontrib>Kaloshkin, S.</creatorcontrib><creatorcontrib>Zhukov, A.</creatorcontrib><title>Giant magneto-impedance effect in thin Finemet nanocrystalline microwires</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>We studied giant magneto‐impedance (GMI) effect, magnetic and structural properties of thin Finemet‐type (FeCuNbSiB) glass‐coated microwires fabricated by Taylor‐Ulitovsky technique with different composition and diameters, with the aim to achieve the optimal conditions for improving the final GMI response. We observed that GMI can be tailored either by controlling the microwires microstructure through the thermal annealing, or by controlling the quenching rate velocity during the fabrication processes. Finally, we obtained up to 50% GMI in the as‐prepared samples and up to 100% in annealed microwires. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>Annealing</subject><subject>Composition effects</subject><subject>Ferrous alloys</subject><subject>giant magnetoimpedance</subject><subject>magnetoelastic anisotropy</subject><subject>Magnetoimpedance</subject><subject>metallic glasses</subject><subject>microwires</subject><subject>nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>nanograins</subject><subject>Optimization</subject><subject>Quenching</subject><subject>Solid state physics</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4soOKdXzwUvXjpfkiZtjzrcHAx_UN2OIW3fNLNNZ9Ix99-bMRHxIoTkET6fx3vfIDgnMCAA9GrlXDmgQBhAAulB0COCQERETA99nQoaCcbJcXDi3BKAcSCiF0zGWpkubNSrwa6NdLPCSpkSQ1wssOxCbcLuzV8jbbDBLjTKtKXduk7Vtf8KG13adqMtutPgaKFqh2ffbz94Gd0-D--i6cN4MryeRiVL0zTiGRNlRgtQFRYJyYAxlSSsYCIrsgoJZRURGENFISlEhZxyETNKiriKSYwx6weX-74r236s0XWy0a7EulYG27WThHMC_sTUoxd_0GW7tsZP5ynKE87TdNdwsKf8Js5ZXMiV1Y2yW0lA7pKVu2TlT7JeyPbCRte4_YeWj3k-_O1Ge1e7Dj9_XGXfpUhYwuX8fiznOWOzm3wmn9gXyg6LOw</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Talaat, A.</creator><creator>Ipatov, M.</creator><creator>Zhukova, V.</creator><creator>Blanco, J. M.</creator><creator>Churyukanova, M.</creator><creator>Kaloshkin, S.</creator><creator>Zhukov, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>201405</creationdate><title>Giant magneto-impedance effect in thin Finemet nanocrystalline microwires</title><author>Talaat, A. ; Ipatov, M. ; Zhukova, V. ; Blanco, J. M. ; Churyukanova, M. ; Kaloshkin, S. ; Zhukov, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-5936c92b0adeb719033a773b369b9de123d16e40d207b6de52564321b4d414e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Composition effects</topic><topic>Ferrous alloys</topic><topic>giant magnetoimpedance</topic><topic>magnetoelastic anisotropy</topic><topic>Magnetoimpedance</topic><topic>metallic glasses</topic><topic>microwires</topic><topic>nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>nanograins</topic><topic>Optimization</topic><topic>Quenching</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talaat, A.</creatorcontrib><creatorcontrib>Ipatov, M.</creatorcontrib><creatorcontrib>Zhukova, V.</creatorcontrib><creatorcontrib>Blanco, J. M.</creatorcontrib><creatorcontrib>Churyukanova, M.</creatorcontrib><creatorcontrib>Kaloshkin, S.</creatorcontrib><creatorcontrib>Zhukov, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talaat, A.</au><au>Ipatov, M.</au><au>Zhukova, V.</au><au>Blanco, J. M.</au><au>Churyukanova, M.</au><au>Kaloshkin, S.</au><au>Zhukov, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant magneto-impedance effect in thin Finemet nanocrystalline microwires</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2014-05</date><risdate>2014</risdate><volume>11</volume><issue>5-6</issue><spage>1120</spage><epage>1124</epage><pages>1120-1124</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>We studied giant magneto‐impedance (GMI) effect, magnetic and structural properties of thin Finemet‐type (FeCuNbSiB) glass‐coated microwires fabricated by Taylor‐Ulitovsky technique with different composition and diameters, with the aim to achieve the optimal conditions for improving the final GMI response. We observed that GMI can be tailored either by controlling the microwires microstructure through the thermal annealing, or by controlling the quenching rate velocity during the fabrication processes. Finally, we obtained up to 50% GMI in the as‐prepared samples and up to 100% in annealed microwires. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201300708</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2014-05, Vol.11 (5-6), p.1120-1124
issn 1862-6351
1610-1642
language eng
recordid cdi_proquest_miscellaneous_1551051042
source Wiley Online Library Journals Frontfile Complete
subjects Annealing
Composition effects
Ferrous alloys
giant magnetoimpedance
magnetoelastic anisotropy
Magnetoimpedance
metallic glasses
microwires
nanocrystalline materials
Nanocrystals
nanograins
Optimization
Quenching
Solid state physics
title Giant magneto-impedance effect in thin Finemet nanocrystalline microwires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20magneto-impedance%20effect%20in%20thin%20Finemet%20nanocrystalline%20microwires&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Talaat,%20A.&rft.date=2014-05&rft.volume=11&rft.issue=5-6&rft.spage=1120&rft.epage=1124&rft.pages=1120-1124&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201300708&rft_dat=%3Cproquest_cross%3E1551051042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1525755884&rft_id=info:pmid/&rfr_iscdi=true