Numerical Optimization of Eigenvalues of Hermitian Matrix Functions
This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued function depending on its parameters analytically in a box. We describe how the analytical properties of eigenvalue functions can be put into use to derive p...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2014-01, Vol.35 (2), p.699-724 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 2 |
container_start_page | 699 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 35 |
creator | Mengi, Emre Yildirim, E. Alper Kiliç, Mustafa |
description | This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued function depending on its parameters analytically in a box. We describe how the analytical properties of eigenvalue functions can be put into use to derive piecewise quadratic functions that underestimate the eigenvalue functions. These piecewise quadratic underestimators lead us to a global minimization algorithm, originally due to Breiman and Cutler. We prove the global convergence of the algorithm and show that it can be effectively used for the minimization of extreme eigenvalues, e.g., the largest eigenvalue or the sum of the largest specified number of eigenvalues. This is particularly facilitated by the analytical formulas for the first derivatives of eigenvalues, as well as analytical lower bounds on the second derivatives that can be deduced for extreme eigenvalue functions. The applications that we have in mind also include the ${\rm H}_\infty$-norm of a linear dynamical system, numerical radius, distance to uncontrollability, and various other nonconvex eigenvalue optimization problems, for which, generically, the eigenvalue function involved is simple at all points. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/130933472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551050434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551050434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-d1929226617a51c1f65ae44526e48730a5415c191af18a3692b5b21fa0e61fe83</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqwX-w4EUPq5l8bo5SWitUe9HzMo2JpOxHTXZF--vdpeLB08zAw_DyEnIJ9BaA6zvg1HAuNDsiE6BG5hoUOyYTWgy70KY4JWcpbSkFJQxMyOy5r10MFqtsvetCHfbYhbbJWp_Nw7trPrHqXRrPpYt16AI22RN2MXxli76xo03n5MRjldzF75yS18X8ZbbMV-uHx9n9KrfM0C5_A8MMY0qBRgkWvJLohJBMOVFoTlEKkBYMoIcCuTJsIzcMPFKnwLuCT8n14e8uth9Dqq6sQ7KuqrBxbZ9KkBKopIKLgV79o9u2j82QblCcKaOF0oO6OSgb25Si8-Uuhhrjdwm0HOss_-rkP0YYZLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1532697467</pqid></control><display><type>article</type><title>Numerical Optimization of Eigenvalues of Hermitian Matrix Functions</title><source>SIAM Journals Online</source><creator>Mengi, Emre ; Yildirim, E. Alper ; Kiliç, Mustafa</creator><creatorcontrib>Mengi, Emre ; Yildirim, E. Alper ; Kiliç, Mustafa</creatorcontrib><description>This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued function depending on its parameters analytically in a box. We describe how the analytical properties of eigenvalue functions can be put into use to derive piecewise quadratic functions that underestimate the eigenvalue functions. These piecewise quadratic underestimators lead us to a global minimization algorithm, originally due to Breiman and Cutler. We prove the global convergence of the algorithm and show that it can be effectively used for the minimization of extreme eigenvalues, e.g., the largest eigenvalue or the sum of the largest specified number of eigenvalues. This is particularly facilitated by the analytical formulas for the first derivatives of eigenvalues, as well as analytical lower bounds on the second derivatives that can be deduced for extreme eigenvalue functions. The applications that we have in mind also include the ${\rm H}_\infty$-norm of a linear dynamical system, numerical radius, distance to uncontrollability, and various other nonconvex eigenvalue optimization problems, for which, generically, the eigenvalue function involved is simple at all points. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/130933472</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Control theory ; Convergence ; Derivatives ; Dynamical systems ; Eigenvalues ; Mathematical analysis ; Mathematical models ; Minimization ; Optimization</subject><ispartof>SIAM journal on matrix analysis and applications, 2014-01, Vol.35 (2), p.699-724</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-d1929226617a51c1f65ae44526e48730a5415c191af18a3692b5b21fa0e61fe83</citedby><cites>FETCH-LOGICAL-c290t-d1929226617a51c1f65ae44526e48730a5415c191af18a3692b5b21fa0e61fe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Mengi, Emre</creatorcontrib><creatorcontrib>Yildirim, E. Alper</creatorcontrib><creatorcontrib>Kiliç, Mustafa</creatorcontrib><title>Numerical Optimization of Eigenvalues of Hermitian Matrix Functions</title><title>SIAM journal on matrix analysis and applications</title><description>This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued function depending on its parameters analytically in a box. We describe how the analytical properties of eigenvalue functions can be put into use to derive piecewise quadratic functions that underestimate the eigenvalue functions. These piecewise quadratic underestimators lead us to a global minimization algorithm, originally due to Breiman and Cutler. We prove the global convergence of the algorithm and show that it can be effectively used for the minimization of extreme eigenvalues, e.g., the largest eigenvalue or the sum of the largest specified number of eigenvalues. This is particularly facilitated by the analytical formulas for the first derivatives of eigenvalues, as well as analytical lower bounds on the second derivatives that can be deduced for extreme eigenvalue functions. The applications that we have in mind also include the ${\rm H}_\infty$-norm of a linear dynamical system, numerical radius, distance to uncontrollability, and various other nonconvex eigenvalue optimization problems, for which, generically, the eigenvalue function involved is simple at all points. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Optimization</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LAzEQBuAgCtbqwX-w4EUPq5l8bo5SWitUe9HzMo2JpOxHTXZF--vdpeLB08zAw_DyEnIJ9BaA6zvg1HAuNDsiE6BG5hoUOyYTWgy70KY4JWcpbSkFJQxMyOy5r10MFqtsvetCHfbYhbbJWp_Nw7trPrHqXRrPpYt16AI22RN2MXxli76xo03n5MRjldzF75yS18X8ZbbMV-uHx9n9KrfM0C5_A8MMY0qBRgkWvJLohJBMOVFoTlEKkBYMoIcCuTJsIzcMPFKnwLuCT8n14e8uth9Dqq6sQ7KuqrBxbZ9KkBKopIKLgV79o9u2j82QblCcKaOF0oO6OSgb25Si8-Uuhhrjdwm0HOss_-rkP0YYZLU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Mengi, Emre</creator><creator>Yildirim, E. Alper</creator><creator>Kiliç, Mustafa</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Numerical Optimization of Eigenvalues of Hermitian Matrix Functions</title><author>Mengi, Emre ; Yildirim, E. Alper ; Kiliç, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-d1929226617a51c1f65ae44526e48730a5415c191af18a3692b5b21fa0e61fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mengi, Emre</creatorcontrib><creatorcontrib>Yildirim, E. Alper</creatorcontrib><creatorcontrib>Kiliç, Mustafa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mengi, Emre</au><au>Yildirim, E. Alper</au><au>Kiliç, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Optimization of Eigenvalues of Hermitian Matrix Functions</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>35</volume><issue>2</issue><spage>699</spage><epage>724</epage><pages>699-724</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued function depending on its parameters analytically in a box. We describe how the analytical properties of eigenvalue functions can be put into use to derive piecewise quadratic functions that underestimate the eigenvalue functions. These piecewise quadratic underestimators lead us to a global minimization algorithm, originally due to Breiman and Cutler. We prove the global convergence of the algorithm and show that it can be effectively used for the minimization of extreme eigenvalues, e.g., the largest eigenvalue or the sum of the largest specified number of eigenvalues. This is particularly facilitated by the analytical formulas for the first derivatives of eigenvalues, as well as analytical lower bounds on the second derivatives that can be deduced for extreme eigenvalue functions. The applications that we have in mind also include the ${\rm H}_\infty$-norm of a linear dynamical system, numerical radius, distance to uncontrollability, and various other nonconvex eigenvalue optimization problems, for which, generically, the eigenvalue function involved is simple at all points. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130933472</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2014-01, Vol.35 (2), p.699-724 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551050434 |
source | SIAM Journals Online |
subjects | Algorithms Control theory Convergence Derivatives Dynamical systems Eigenvalues Mathematical analysis Mathematical models Minimization Optimization |
title | Numerical Optimization of Eigenvalues of Hermitian Matrix Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Optimization%20of%20Eigenvalues%20of%20Hermitian%20Matrix%20Functions&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Mengi,%20Emre&rft.date=2014-01-01&rft.volume=35&rft.issue=2&rft.spage=699&rft.epage=724&rft.pages=699-724&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/130933472&rft_dat=%3Cproquest_cross%3E1551050434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1532697467&rft_id=info:pmid/&rfr_iscdi=true |