Caloric materials near ferroic phase transitions

At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2014-05, Vol.13 (5), p.439-450
Hauptverfasser: Moya, X., Kar-Narayan, S., Mathur, N. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 5
container_start_page 439
container_title Nature materials
container_volume 13
creator Moya, X.
Kar-Narayan, S.
Mathur, N. D.
description At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them. A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
doi_str_mv 10.1038/nmat3951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551050360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518622579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK2Cv0ACXvQQ3dnP5CjFLyh40XOYZDeakmzqbnLw37ulrUpPnmaYeXiGeQk5B3oDlGe3rsOB5xIOyBSEVqlQih5uewDGJuQkhCWlDKRUx2TChJagNZsSOse2902VRIP1DbYhcRZ9Ulvv-zhefWCwyeDRhWZoehdOyVEdKXu2rTPy9nD_On9KFy-Pz_O7RVpF85BqVnHAzEpqNGQGagkoFNBSClmVuclqLkzNKGaZLAVHBK4E2tKURqOglM_I1ca78v3naMNQdE2obNuis_0YivgJUEm5-g8KmWJM6jyil3vosh-9i4-shVqxqMt_hZXvQ_C2Lla-6dB_FUCLdeDFLvCIXmyFY9lZ8wPuEo7A9QYIceXerf9zcV_2DbxJhz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557626039</pqid></control><display><type>article</type><title>Caloric materials near ferroic phase transitions</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Moya, X. ; Kar-Narayan, S. ; Mathur, N. D.</creator><creatorcontrib>Moya, X. ; Kar-Narayan, S. ; Mathur, N. D.</creatorcontrib><description>At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them. A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3951</identifier><identifier>PMID: 24751772</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/301/119/997 ; Biomaterials ; Condensed Matter Physics ; Conjugates ; Cooling ; Cooling effects ; Experimental methods ; Hot Temperature ; Iron Compounds - chemistry ; Magnetic Phenomena ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Order parameters ; Phase transformations ; Phase Transition ; Phase transitions ; review-article ; Thermodynamics</subject><ispartof>Nature materials, 2014-05, Vol.13 (5), p.439-450</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</citedby><cites>FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3951$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3951$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24751772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moya, X.</creatorcontrib><creatorcontrib>Kar-Narayan, S.</creatorcontrib><creatorcontrib>Mathur, N. D.</creatorcontrib><title>Caloric materials near ferroic phase transitions</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them. A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.</description><subject>639/301/119/2795</subject><subject>639/301/119/997</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Conjugates</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Experimental methods</subject><subject>Hot Temperature</subject><subject>Iron Compounds - chemistry</subject><subject>Magnetic Phenomena</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Order parameters</subject><subject>Phase transformations</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>review-article</subject><subject>Thermodynamics</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkE1Lw0AQhhdRbK2Cv0ACXvQQ3dnP5CjFLyh40XOYZDeakmzqbnLw37ulrUpPnmaYeXiGeQk5B3oDlGe3rsOB5xIOyBSEVqlQih5uewDGJuQkhCWlDKRUx2TChJagNZsSOse2902VRIP1DbYhcRZ9Ulvv-zhefWCwyeDRhWZoehdOyVEdKXu2rTPy9nD_On9KFy-Pz_O7RVpF85BqVnHAzEpqNGQGagkoFNBSClmVuclqLkzNKGaZLAVHBK4E2tKURqOglM_I1ca78v3naMNQdE2obNuis_0YivgJUEm5-g8KmWJM6jyil3vosh-9i4-shVqxqMt_hZXvQ_C2Lla-6dB_FUCLdeDFLvCIXmyFY9lZ8wPuEo7A9QYIceXerf9zcV_2DbxJhz8</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Moya, X.</creator><creator>Kar-Narayan, S.</creator><creator>Mathur, N. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Caloric materials near ferroic phase transitions</title><author>Moya, X. ; Kar-Narayan, S. ; Mathur, N. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/2795</topic><topic>639/301/119/997</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Conjugates</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Experimental methods</topic><topic>Hot Temperature</topic><topic>Iron Compounds - chemistry</topic><topic>Magnetic Phenomena</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Order parameters</topic><topic>Phase transformations</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>review-article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moya, X.</creatorcontrib><creatorcontrib>Kar-Narayan, S.</creatorcontrib><creatorcontrib>Mathur, N. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moya, X.</au><au>Kar-Narayan, S.</au><au>Mathur, N. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caloric materials near ferroic phase transitions</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>13</volume><issue>5</issue><spage>439</spage><epage>450</epage><pages>439-450</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them. A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24751772</pmid><doi>10.1038/nmat3951</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2014-05, Vol.13 (5), p.439-450
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1551050360
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 639/301/119/2795
639/301/119/997
Biomaterials
Condensed Matter Physics
Conjugates
Cooling
Cooling effects
Experimental methods
Hot Temperature
Iron Compounds - chemistry
Magnetic Phenomena
Materials Science
Nanotechnology
Optical and Electronic Materials
Order parameters
Phase transformations
Phase Transition
Phase transitions
review-article
Thermodynamics
title Caloric materials near ferroic phase transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caloric%20materials%20near%20ferroic%20phase%20transitions&rft.jtitle=Nature%20materials&rft.au=Moya,%20X.&rft.date=2014-05-01&rft.volume=13&rft.issue=5&rft.spage=439&rft.epage=450&rft.pages=439-450&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3951&rft_dat=%3Cproquest_cross%3E1518622579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1557626039&rft_id=info:pmid/24751772&rfr_iscdi=true