Caloric materials near ferroic phase transitions
At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure t...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-05, Vol.13 (5), p.439-450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 5 |
container_start_page | 439 |
container_title | Nature materials |
container_volume | 13 |
creator | Moya, X. Kar-Narayan, S. Mathur, N. D. |
description | At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them.
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications. |
doi_str_mv | 10.1038/nmat3951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551050360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518622579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK2Cv0ACXvQQ3dnP5CjFLyh40XOYZDeakmzqbnLw37ulrUpPnmaYeXiGeQk5B3oDlGe3rsOB5xIOyBSEVqlQih5uewDGJuQkhCWlDKRUx2TChJagNZsSOse2902VRIP1DbYhcRZ9Ulvv-zhefWCwyeDRhWZoehdOyVEdKXu2rTPy9nD_On9KFy-Pz_O7RVpF85BqVnHAzEpqNGQGagkoFNBSClmVuclqLkzNKGaZLAVHBK4E2tKURqOglM_I1ca78v3naMNQdE2obNuis_0YivgJUEm5-g8KmWJM6jyil3vosh-9i4-shVqxqMt_hZXvQ_C2Lla-6dB_FUCLdeDFLvCIXmyFY9lZ8wPuEo7A9QYIceXerf9zcV_2DbxJhz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557626039</pqid></control><display><type>article</type><title>Caloric materials near ferroic phase transitions</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Moya, X. ; Kar-Narayan, S. ; Mathur, N. D.</creator><creatorcontrib>Moya, X. ; Kar-Narayan, S. ; Mathur, N. D.</creatorcontrib><description>At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them.
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3951</identifier><identifier>PMID: 24751772</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/301/119/997 ; Biomaterials ; Condensed Matter Physics ; Conjugates ; Cooling ; Cooling effects ; Experimental methods ; Hot Temperature ; Iron Compounds - chemistry ; Magnetic Phenomena ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Order parameters ; Phase transformations ; Phase Transition ; Phase transitions ; review-article ; Thermodynamics</subject><ispartof>Nature materials, 2014-05, Vol.13 (5), p.439-450</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</citedby><cites>FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3951$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3951$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24751772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moya, X.</creatorcontrib><creatorcontrib>Kar-Narayan, S.</creatorcontrib><creatorcontrib>Mathur, N. D.</creatorcontrib><title>Caloric materials near ferroic phase transitions</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them.
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.</description><subject>639/301/119/2795</subject><subject>639/301/119/997</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Conjugates</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Experimental methods</subject><subject>Hot Temperature</subject><subject>Iron Compounds - chemistry</subject><subject>Magnetic Phenomena</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Order parameters</subject><subject>Phase transformations</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>review-article</subject><subject>Thermodynamics</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkE1Lw0AQhhdRbK2Cv0ACXvQQ3dnP5CjFLyh40XOYZDeakmzqbnLw37ulrUpPnmaYeXiGeQk5B3oDlGe3rsOB5xIOyBSEVqlQih5uewDGJuQkhCWlDKRUx2TChJagNZsSOse2902VRIP1DbYhcRZ9Ulvv-zhefWCwyeDRhWZoehdOyVEdKXu2rTPy9nD_On9KFy-Pz_O7RVpF85BqVnHAzEpqNGQGagkoFNBSClmVuclqLkzNKGaZLAVHBK4E2tKURqOglM_I1ca78v3naMNQdE2obNuis_0YivgJUEm5-g8KmWJM6jyil3vosh-9i4-shVqxqMt_hZXvQ_C2Lla-6dB_FUCLdeDFLvCIXmyFY9lZ8wPuEo7A9QYIceXerf9zcV_2DbxJhz8</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Moya, X.</creator><creator>Kar-Narayan, S.</creator><creator>Mathur, N. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Caloric materials near ferroic phase transitions</title><author>Moya, X. ; Kar-Narayan, S. ; Mathur, N. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-72c31a8e50d718d1f51a4610b545cb9d8f34df20a885b43aa1364aebdbd7a4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/2795</topic><topic>639/301/119/997</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Conjugates</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Experimental methods</topic><topic>Hot Temperature</topic><topic>Iron Compounds - chemistry</topic><topic>Magnetic Phenomena</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Order parameters</topic><topic>Phase transformations</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>review-article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moya, X.</creatorcontrib><creatorcontrib>Kar-Narayan, S.</creatorcontrib><creatorcontrib>Mathur, N. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moya, X.</au><au>Kar-Narayan, S.</au><au>Mathur, N. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caloric materials near ferroic phase transitions</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>13</volume><issue>5</issue><spage>439</spage><epage>450</epage><pages>439-450</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>At present, magneto-, electro- and mechanocaloric effects are intensely investigated as the basis for possible cooling applications. This Review discusses and compares the three effects from both a fundamental and an applied perspective, with an emphasis on the experimental methods used to measure them.
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24751772</pmid><doi>10.1038/nmat3951</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-05, Vol.13 (5), p.439-450 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551050360 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 639/301/119/2795 639/301/119/997 Biomaterials Condensed Matter Physics Conjugates Cooling Cooling effects Experimental methods Hot Temperature Iron Compounds - chemistry Magnetic Phenomena Materials Science Nanotechnology Optical and Electronic Materials Order parameters Phase transformations Phase Transition Phase transitions review-article Thermodynamics |
title | Caloric materials near ferroic phase transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caloric%20materials%20near%20ferroic%20phase%20transitions&rft.jtitle=Nature%20materials&rft.au=Moya,%20X.&rft.date=2014-05-01&rft.volume=13&rft.issue=5&rft.spage=439&rft.epage=450&rft.pages=439-450&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3951&rft_dat=%3Cproquest_cross%3E1518622579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1557626039&rft_id=info:pmid/24751772&rfr_iscdi=true |