Fast metaheuristics for the discrete (r|p)-centroid problem

Two players, the leader and his competitor, open facilities, striving to capture the largest market share. The leader opens p facilities, then the follower opens r facilities. Each client chooses the nearest facility as his supplier. We need to choose p facilities of the leader in such a way as to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2014-04, Vol.75 (4), p.677-687
Hauptverfasser: Davydov, I. A., Kochetov, Yu. A., Mladenovic, N., Urosevic, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 4
container_start_page 677
container_title Automation and remote control
container_volume 75
creator Davydov, I. A.
Kochetov, Yu. A.
Mladenovic, N.
Urosevic, D.
description Two players, the leader and his competitor, open facilities, striving to capture the largest market share. The leader opens p facilities, then the follower opens r facilities. Each client chooses the nearest facility as his supplier. We need to choose p facilities of the leader in such a way as to maximize his market share. This problem can be represented as a bilevel programming problem. Based on this representation, in this work we propose two numerical approaches: local search with variable neighborhoods and stochastic tabu search. We pay the most attention to improving the methods’ efficiency at no loss to the quality of the resulting solutions. Results of numerical experiments support the possibility to quickly find an exact solution for the problem and solutions with small error.
doi_str_mv 10.1134/S0005117914040080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551050046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551050046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-661237529aa9ed67f7193b9b28a4b7a92ac7c29545592ec4b5a20a4f8c196ce93</originalsourceid><addsrcrecordid>eNp9kDtPw0AQhE8IJELgB9C5DIVh9x62T1QoIoAUiQKoT-fLmjjyI9ydCyR-fByZDolqi5lvd2cYu0a4RRTy7g0AFGKuUYIEKOCEzTCDIhUg-CmbHeX0qJ-zixB2AIjAxYzdr2yISUvRbmnwdYi1C0nV-yRuKdnUwXmKlCz8z_4mddRF39ebZO_7sqH2kp1Vtgl09Tvn7GP1-L58TtevTy_Lh3XqBMeYZhlykSuurdW0yfIqRy1KXfLCyjK3mluXO66VVEpzcrJUloOVVeFQZ460mLPFtHe8-zVQiKYdH6OmsR31QzCoFIICkNloxcnqfB-Cp8rsfd1a_20QzLEo86eokeETE0Zv90ne7PrBd2Oif6ADulNojg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551050046</pqid></control><display><type>article</type><title>Fast metaheuristics for the discrete (r|p)-centroid problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Davydov, I. A. ; Kochetov, Yu. A. ; Mladenovic, N. ; Urosevic, D.</creator><creatorcontrib>Davydov, I. A. ; Kochetov, Yu. A. ; Mladenovic, N. ; Urosevic, D.</creatorcontrib><description>Two players, the leader and his competitor, open facilities, striving to capture the largest market share. The leader opens p facilities, then the follower opens r facilities. Each client chooses the nearest facility as his supplier. We need to choose p facilities of the leader in such a way as to maximize his market share. This problem can be represented as a bilevel programming problem. Based on this representation, in this work we propose two numerical approaches: local search with variable neighborhoods and stochastic tabu search. We pay the most attention to improving the methods’ efficiency at no loss to the quality of the resulting solutions. Results of numerical experiments support the possibility to quickly find an exact solution for the problem and solutions with small error.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117914040080</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Exact solutions ; Markets ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Programming ; Remote control ; Representations ; Robotics ; Suppliers ; Systems Theory ; Two-Level Programming Problems</subject><ispartof>Automation and remote control, 2014-04, Vol.75 (4), p.677-687</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-661237529aa9ed67f7193b9b28a4b7a92ac7c29545592ec4b5a20a4f8c196ce93</citedby><cites>FETCH-LOGICAL-c321t-661237529aa9ed67f7193b9b28a4b7a92ac7c29545592ec4b5a20a4f8c196ce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117914040080$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117914040080$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Davydov, I. A.</creatorcontrib><creatorcontrib>Kochetov, Yu. A.</creatorcontrib><creatorcontrib>Mladenovic, N.</creatorcontrib><creatorcontrib>Urosevic, D.</creatorcontrib><title>Fast metaheuristics for the discrete (r|p)-centroid problem</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>Two players, the leader and his competitor, open facilities, striving to capture the largest market share. The leader opens p facilities, then the follower opens r facilities. Each client chooses the nearest facility as his supplier. We need to choose p facilities of the leader in such a way as to maximize his market share. This problem can be represented as a bilevel programming problem. Based on this representation, in this work we propose two numerical approaches: local search with variable neighborhoods and stochastic tabu search. We pay the most attention to improving the methods’ efficiency at no loss to the quality of the resulting solutions. Results of numerical experiments support the possibility to quickly find an exact solution for the problem and solutions with small error.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Exact solutions</subject><subject>Markets</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Programming</subject><subject>Remote control</subject><subject>Representations</subject><subject>Robotics</subject><subject>Suppliers</subject><subject>Systems Theory</subject><subject>Two-Level Programming Problems</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPw0AQhE8IJELgB9C5DIVh9x62T1QoIoAUiQKoT-fLmjjyI9ydCyR-fByZDolqi5lvd2cYu0a4RRTy7g0AFGKuUYIEKOCEzTCDIhUg-CmbHeX0qJ-zixB2AIjAxYzdr2yISUvRbmnwdYi1C0nV-yRuKdnUwXmKlCz8z_4mddRF39ebZO_7sqH2kp1Vtgl09Tvn7GP1-L58TtevTy_Lh3XqBMeYZhlykSuurdW0yfIqRy1KXfLCyjK3mluXO66VVEpzcrJUloOVVeFQZ460mLPFtHe8-zVQiKYdH6OmsR31QzCoFIICkNloxcnqfB-Cp8rsfd1a_20QzLEo86eokeETE0Zv90ne7PrBd2Oif6ADulNojg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Davydov, I. A.</creator><creator>Kochetov, Yu. A.</creator><creator>Mladenovic, N.</creator><creator>Urosevic, D.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Fast metaheuristics for the discrete (r|p)-centroid problem</title><author>Davydov, I. A. ; Kochetov, Yu. A. ; Mladenovic, N. ; Urosevic, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-661237529aa9ed67f7193b9b28a4b7a92ac7c29545592ec4b5a20a4f8c196ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Exact solutions</topic><topic>Markets</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Programming</topic><topic>Remote control</topic><topic>Representations</topic><topic>Robotics</topic><topic>Suppliers</topic><topic>Systems Theory</topic><topic>Two-Level Programming Problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydov, I. A.</creatorcontrib><creatorcontrib>Kochetov, Yu. A.</creatorcontrib><creatorcontrib>Mladenovic, N.</creatorcontrib><creatorcontrib>Urosevic, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydov, I. A.</au><au>Kochetov, Yu. A.</au><au>Mladenovic, N.</au><au>Urosevic, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast metaheuristics for the discrete (r|p)-centroid problem</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>75</volume><issue>4</issue><spage>677</spage><epage>687</epage><pages>677-687</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>Two players, the leader and his competitor, open facilities, striving to capture the largest market share. The leader opens p facilities, then the follower opens r facilities. Each client chooses the nearest facility as his supplier. We need to choose p facilities of the leader in such a way as to maximize his market share. This problem can be represented as a bilevel programming problem. Based on this representation, in this work we propose two numerical approaches: local search with variable neighborhoods and stochastic tabu search. We pay the most attention to improving the methods’ efficiency at no loss to the quality of the resulting solutions. Results of numerical experiments support the possibility to quickly find an exact solution for the problem and solutions with small error.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117914040080</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2014-04, Vol.75 (4), p.677-687
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_miscellaneous_1551050046
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Exact solutions
Markets
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Programming
Remote control
Representations
Robotics
Suppliers
Systems Theory
Two-Level Programming Problems
title Fast metaheuristics for the discrete (r|p)-centroid problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20metaheuristics%20for%20the%20discrete%20(r%7Cp)-centroid%20problem&rft.jtitle=Automation%20and%20remote%20control&rft.au=Davydov,%20I.%20A.&rft.date=2014-04-01&rft.volume=75&rft.issue=4&rft.spage=677&rft.epage=687&rft.pages=677-687&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117914040080&rft_dat=%3Cproquest_cross%3E1551050046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551050046&rft_id=info:pmid/&rfr_iscdi=true