Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices

An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy economics 2013-11, Vol.40, p.405-415
Hauptverfasser: Xiong, Tao, Bao, Yukun, Hu, Zhongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue
container_start_page 405
container_title Energy economics
container_volume 40
creator Xiong, Tao
Bao, Yukun
Hu, Zhongyi
description An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load. •Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.
doi_str_mv 10.1016/j.eneco.2013.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551048805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988313001746</els_id><sourcerecordid>1551048805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</originalsourceid><addsrcrecordid>eNqNkkGLFDEQhRtRcFz9BV4CInjp3konnU4ED-6y6sKCFz2HdFLRDJnOmHQP7L83s7N4EJQ5hUp9rxJevaZ5TaGjQMXltsMZbep6oKyDsYNePmk2VI6sFVTSp80GKIdWScmeNy9K2QLAIAa5adYrvE-zI2nGtiy4b81PNI74lNGasoT5x3tyczBxNUtIM0memLhgnmt5QLJb4xL-oSO75DCW4xWxeXVIUohkn4PF8rJ55k0s-OrxvGi-f7r5dv2lvfv6-fb6411rhZBLy6bJeUa5Z156MQ3cO2HdYKWxYvRqBK_YVDsgei9h6u0kkKNlPZXOjCNjF82709x9Tr9WLIvehWIxRjNjWoumw0CBSwnDGSinSnFK1RkoA6V6JuQZKFUDcN4f__rmL3Sb1mp0rBQXfJRKjLxS7ETZnErJ6HV1dGfyvaagj1nQW_2QBX3MgoZR1yxU1dvH2aZYE302sw3lj7SXwHr24NeHE1cXh4eAWRcbcLboQt3rol0K_33nN4CTyvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464789674</pqid></control><display><type>article</type><title>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</title><source>PAIS Index</source><source>Access via ScienceDirect (Elsevier)</source><creator>Xiong, Tao ; Bao, Yukun ; Hu, Zhongyi</creator><creatorcontrib>Xiong, Tao ; Bao, Yukun ; Hu, Zhongyi</creatorcontrib><description>An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load. •Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2013.07.028</identifier><identifier>CODEN: EECODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Applied sciences ; Computational efficiency ; Computational methods ; Cost ; Crude oil ; Crude oil price forecasting ; Crude oil prices ; Economic data ; EMD-based modeling framework ; Empirical research ; End effect ; Energy ; Energy economics ; Exact sciences and technology ; Forecasting ; Forecasting techniques ; Fossil fuels and derived products ; General, economic and professional studies ; Governments ; Input output analysis ; Investors ; Mathematical models ; Methodology. Modelling ; Multi-step-ahead forecasting ; Neural networks ; Oil ; Oil price ; Petroleum industry ; Prediction strategy ; Prices ; Quantitative analysis ; Strategy ; Studies ; Texas</subject><ispartof>Energy economics, 2013-11, Vol.40, p.405-415</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Science Ltd. Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</citedby><cites>FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2013.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27865,27866,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28032373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Bao, Yukun</creatorcontrib><creatorcontrib>Hu, Zhongyi</creatorcontrib><title>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</title><title>Energy economics</title><description>An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load. •Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computational methods</subject><subject>Cost</subject><subject>Crude oil</subject><subject>Crude oil price forecasting</subject><subject>Crude oil prices</subject><subject>Economic data</subject><subject>EMD-based modeling framework</subject><subject>Empirical research</subject><subject>End effect</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Fossil fuels and derived products</subject><subject>General, economic and professional studies</subject><subject>Governments</subject><subject>Input output analysis</subject><subject>Investors</subject><subject>Mathematical models</subject><subject>Methodology. Modelling</subject><subject>Multi-step-ahead forecasting</subject><subject>Neural networks</subject><subject>Oil</subject><subject>Oil price</subject><subject>Petroleum industry</subject><subject>Prediction strategy</subject><subject>Prices</subject><subject>Quantitative analysis</subject><subject>Strategy</subject><subject>Studies</subject><subject>Texas</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkkGLFDEQhRtRcFz9BV4CInjp3konnU4ED-6y6sKCFz2HdFLRDJnOmHQP7L83s7N4EJQ5hUp9rxJevaZ5TaGjQMXltsMZbep6oKyDsYNePmk2VI6sFVTSp80GKIdWScmeNy9K2QLAIAa5adYrvE-zI2nGtiy4b81PNI74lNGasoT5x3tyczBxNUtIM0memLhgnmt5QLJb4xL-oSO75DCW4xWxeXVIUohkn4PF8rJ55k0s-OrxvGi-f7r5dv2lvfv6-fb6411rhZBLy6bJeUa5Z156MQ3cO2HdYKWxYvRqBK_YVDsgei9h6u0kkKNlPZXOjCNjF82709x9Tr9WLIvehWIxRjNjWoumw0CBSwnDGSinSnFK1RkoA6V6JuQZKFUDcN4f__rmL3Sb1mp0rBQXfJRKjLxS7ETZnErJ6HV1dGfyvaagj1nQW_2QBX3MgoZR1yxU1dvH2aZYE302sw3lj7SXwHr24NeHE1cXh4eAWRcbcLboQt3rol0K_33nN4CTyvs</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Xiong, Tao</creator><creator>Bao, Yukun</creator><creator>Hu, Zhongyi</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131101</creationdate><title>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</title><author>Xiong, Tao ; Bao, Yukun ; Hu, Zhongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computational methods</topic><topic>Cost</topic><topic>Crude oil</topic><topic>Crude oil price forecasting</topic><topic>Crude oil prices</topic><topic>Economic data</topic><topic>EMD-based modeling framework</topic><topic>Empirical research</topic><topic>End effect</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Fossil fuels and derived products</topic><topic>General, economic and professional studies</topic><topic>Governments</topic><topic>Input output analysis</topic><topic>Investors</topic><topic>Mathematical models</topic><topic>Methodology. Modelling</topic><topic>Multi-step-ahead forecasting</topic><topic>Neural networks</topic><topic>Oil</topic><topic>Oil price</topic><topic>Petroleum industry</topic><topic>Prediction strategy</topic><topic>Prices</topic><topic>Quantitative analysis</topic><topic>Strategy</topic><topic>Studies</topic><topic>Texas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Bao, Yukun</creatorcontrib><creatorcontrib>Hu, Zhongyi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Tao</au><au>Bao, Yukun</au><au>Hu, Zhongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</atitle><jtitle>Energy economics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>40</volume><spage>405</spage><epage>415</epage><pages>405-415</pages><issn>0140-9883</issn><eissn>1873-6181</eissn><coden>EECODR</coden><abstract>An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load. •Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2013.07.028</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2013-11, Vol.40, p.405-415
issn 0140-9883
1873-6181
language eng
recordid cdi_proquest_miscellaneous_1551048805
source PAIS Index; Access via ScienceDirect (Elsevier)
subjects Accuracy
Applied sciences
Computational efficiency
Computational methods
Cost
Crude oil
Crude oil price forecasting
Crude oil prices
Economic data
EMD-based modeling framework
Empirical research
End effect
Energy
Energy economics
Exact sciences and technology
Forecasting
Forecasting techniques
Fossil fuels and derived products
General, economic and professional studies
Governments
Input output analysis
Investors
Mathematical models
Methodology. Modelling
Multi-step-ahead forecasting
Neural networks
Oil
Oil price
Petroleum industry
Prediction strategy
Prices
Quantitative analysis
Strategy
Studies
Texas
title Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20one-step-ahead%20forecasting:%20Evaluation%20of%20alternative%20multi-step-ahead%20forecasting%20models%20for%20crude%20oil%20prices&rft.jtitle=Energy%20economics&rft.au=Xiong,%20Tao&rft.date=2013-11-01&rft.volume=40&rft.spage=405&rft.epage=415&rft.pages=405-415&rft.issn=0140-9883&rft.eissn=1873-6181&rft.coden=EECODR&rft_id=info:doi/10.1016/j.eneco.2013.07.028&rft_dat=%3Cproquest_cross%3E1551048805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464789674&rft_id=info:pmid/&rft_els_id=S0140988313001746&rfr_iscdi=true