Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling frame...
Gespeichert in:
Veröffentlicht in: | Energy economics 2013-11, Vol.40, p.405-415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | |
container_start_page | 405 |
container_title | Energy economics |
container_volume | 40 |
creator | Xiong, Tao Bao, Yukun Hu, Zhongyi |
description | An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load.
•Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load. |
doi_str_mv | 10.1016/j.eneco.2013.07.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551048805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988313001746</els_id><sourcerecordid>1551048805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</originalsourceid><addsrcrecordid>eNqNkkGLFDEQhRtRcFz9BV4CInjp3konnU4ED-6y6sKCFz2HdFLRDJnOmHQP7L83s7N4EJQ5hUp9rxJevaZ5TaGjQMXltsMZbep6oKyDsYNePmk2VI6sFVTSp80GKIdWScmeNy9K2QLAIAa5adYrvE-zI2nGtiy4b81PNI74lNGasoT5x3tyczBxNUtIM0memLhgnmt5QLJb4xL-oSO75DCW4xWxeXVIUohkn4PF8rJ55k0s-OrxvGi-f7r5dv2lvfv6-fb6411rhZBLy6bJeUa5Z156MQ3cO2HdYKWxYvRqBK_YVDsgei9h6u0kkKNlPZXOjCNjF82709x9Tr9WLIvehWIxRjNjWoumw0CBSwnDGSinSnFK1RkoA6V6JuQZKFUDcN4f__rmL3Sb1mp0rBQXfJRKjLxS7ETZnErJ6HV1dGfyvaagj1nQW_2QBX3MgoZR1yxU1dvH2aZYE302sw3lj7SXwHr24NeHE1cXh4eAWRcbcLboQt3rol0K_33nN4CTyvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464789674</pqid></control><display><type>article</type><title>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</title><source>PAIS Index</source><source>Access via ScienceDirect (Elsevier)</source><creator>Xiong, Tao ; Bao, Yukun ; Hu, Zhongyi</creator><creatorcontrib>Xiong, Tao ; Bao, Yukun ; Hu, Zhongyi</creatorcontrib><description>An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load.
•Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2013.07.028</identifier><identifier>CODEN: EECODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Applied sciences ; Computational efficiency ; Computational methods ; Cost ; Crude oil ; Crude oil price forecasting ; Crude oil prices ; Economic data ; EMD-based modeling framework ; Empirical research ; End effect ; Energy ; Energy economics ; Exact sciences and technology ; Forecasting ; Forecasting techniques ; Fossil fuels and derived products ; General, economic and professional studies ; Governments ; Input output analysis ; Investors ; Mathematical models ; Methodology. Modelling ; Multi-step-ahead forecasting ; Neural networks ; Oil ; Oil price ; Petroleum industry ; Prediction strategy ; Prices ; Quantitative analysis ; Strategy ; Studies ; Texas</subject><ispartof>Energy economics, 2013-11, Vol.40, p.405-415</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Science Ltd. Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</citedby><cites>FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2013.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27865,27866,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28032373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Bao, Yukun</creatorcontrib><creatorcontrib>Hu, Zhongyi</creatorcontrib><title>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</title><title>Energy economics</title><description>An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load.
•Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computational methods</subject><subject>Cost</subject><subject>Crude oil</subject><subject>Crude oil price forecasting</subject><subject>Crude oil prices</subject><subject>Economic data</subject><subject>EMD-based modeling framework</subject><subject>Empirical research</subject><subject>End effect</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Fossil fuels and derived products</subject><subject>General, economic and professional studies</subject><subject>Governments</subject><subject>Input output analysis</subject><subject>Investors</subject><subject>Mathematical models</subject><subject>Methodology. Modelling</subject><subject>Multi-step-ahead forecasting</subject><subject>Neural networks</subject><subject>Oil</subject><subject>Oil price</subject><subject>Petroleum industry</subject><subject>Prediction strategy</subject><subject>Prices</subject><subject>Quantitative analysis</subject><subject>Strategy</subject><subject>Studies</subject><subject>Texas</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkkGLFDEQhRtRcFz9BV4CInjp3konnU4ED-6y6sKCFz2HdFLRDJnOmHQP7L83s7N4EJQ5hUp9rxJevaZ5TaGjQMXltsMZbep6oKyDsYNePmk2VI6sFVTSp80GKIdWScmeNy9K2QLAIAa5adYrvE-zI2nGtiy4b81PNI74lNGasoT5x3tyczBxNUtIM0memLhgnmt5QLJb4xL-oSO75DCW4xWxeXVIUohkn4PF8rJ55k0s-OrxvGi-f7r5dv2lvfv6-fb6411rhZBLy6bJeUa5Z156MQ3cO2HdYKWxYvRqBK_YVDsgei9h6u0kkKNlPZXOjCNjF82709x9Tr9WLIvehWIxRjNjWoumw0CBSwnDGSinSnFK1RkoA6V6JuQZKFUDcN4f__rmL3Sb1mp0rBQXfJRKjLxS7ETZnErJ6HV1dGfyvaagj1nQW_2QBX3MgoZR1yxU1dvH2aZYE302sw3lj7SXwHr24NeHE1cXh4eAWRcbcLboQt3rol0K_33nN4CTyvs</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Xiong, Tao</creator><creator>Bao, Yukun</creator><creator>Hu, Zhongyi</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131101</creationdate><title>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</title><author>Xiong, Tao ; Bao, Yukun ; Hu, Zhongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-3bbdf314f3f8f6b54fd6cd5c8ac67f970f93b8f6062f80b2cb6e4ec3218da7733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computational methods</topic><topic>Cost</topic><topic>Crude oil</topic><topic>Crude oil price forecasting</topic><topic>Crude oil prices</topic><topic>Economic data</topic><topic>EMD-based modeling framework</topic><topic>Empirical research</topic><topic>End effect</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Fossil fuels and derived products</topic><topic>General, economic and professional studies</topic><topic>Governments</topic><topic>Input output analysis</topic><topic>Investors</topic><topic>Mathematical models</topic><topic>Methodology. Modelling</topic><topic>Multi-step-ahead forecasting</topic><topic>Neural networks</topic><topic>Oil</topic><topic>Oil price</topic><topic>Petroleum industry</topic><topic>Prediction strategy</topic><topic>Prices</topic><topic>Quantitative analysis</topic><topic>Strategy</topic><topic>Studies</topic><topic>Texas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Bao, Yukun</creatorcontrib><creatorcontrib>Hu, Zhongyi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Tao</au><au>Bao, Yukun</au><au>Hu, Zhongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices</atitle><jtitle>Energy economics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>40</volume><spage>405</spage><epage>415</epage><pages>405-415</pages><issn>0140-9883</issn><eissn>1873-6181</eissn><coden>EECODR</coden><abstract>An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD–SBM–FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD–SBM–FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load.
•Proposing EMD–SBM–FNN for multi-step-ahead crude oil price forecasting•Providing empirical evidence on three multi-step-ahead prediction strategies•EMD–SBM–FNN using MIMO strategy is the best with accredited computational load.•Direct strategy and MIMO strategy achieve the best in terms of prediction accuracy.•Iterated strategy outperforms in terms of low computational load.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2013.07.028</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-9883 |
ispartof | Energy economics, 2013-11, Vol.40, p.405-415 |
issn | 0140-9883 1873-6181 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551048805 |
source | PAIS Index; Access via ScienceDirect (Elsevier) |
subjects | Accuracy Applied sciences Computational efficiency Computational methods Cost Crude oil Crude oil price forecasting Crude oil prices Economic data EMD-based modeling framework Empirical research End effect Energy Energy economics Exact sciences and technology Forecasting Forecasting techniques Fossil fuels and derived products General, economic and professional studies Governments Input output analysis Investors Mathematical models Methodology. Modelling Multi-step-ahead forecasting Neural networks Oil Oil price Petroleum industry Prediction strategy Prices Quantitative analysis Strategy Studies Texas |
title | Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20one-step-ahead%20forecasting:%20Evaluation%20of%20alternative%20multi-step-ahead%20forecasting%20models%20for%20crude%20oil%20prices&rft.jtitle=Energy%20economics&rft.au=Xiong,%20Tao&rft.date=2013-11-01&rft.volume=40&rft.spage=405&rft.epage=415&rft.pages=405-415&rft.issn=0140-9883&rft.eissn=1873-6181&rft.coden=EECODR&rft_id=info:doi/10.1016/j.eneco.2013.07.028&rft_dat=%3Cproquest_cross%3E1551048805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464789674&rft_id=info:pmid/&rft_els_id=S0140988313001746&rfr_iscdi=true |