Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation

Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2014-04, Vol.378 (20), p.1350-1355
Hauptverfasser: Uchiyama, Yusuke, Konno, Hidetoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1355
container_issue 20
container_start_page 1350
container_title Physics letters. A
container_volume 378
creator Uchiyama, Yusuke
Konno, Hidetoshi
description Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation. •Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.
doi_str_mv 10.1016/j.physleta.2014.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551044017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960114002357</els_id><sourcerecordid>1551044017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</originalsourceid><addsrcrecordid>eNqFkM1uEzEUhS0EEqH0FSovu5nh2p7JxLv-CApSJDbt2vLPdeNoMk5tDyKsqr4Cb9gnwVFgzerqXp1zrs5HyAWDlgFbftq2-80hj1h0y4F1LYgWgL8hC7YaRMM7Lt-SBYihb-QS2HvyIectQHWCXJCXm5DK5vX5t0NdNnSfosWcafR0jFaPNJc02zInzDRM1KFHW2jdzTziZLFesk3BoKPmQMsGaZywcWGHUw5xqgE27vYj_qR3Yfpl5vRYX6315PRM8WnWpYo-kndejxnP_84z8vDl8_3t12b9_e7b7fW6sT2I0jDfadFzYcwKrFwxycH1w8AMcm6lF1I6Cdpy4Tw3xkO3kkwuuektc70fjDgjl6fcWvJpxlzULmSL46gnjHNWrO8ZdB2woUqXJ6lNMeeEXu1T2Ol0UAzUEbraqn_Q1RG6AqEq9Gq8OhmxFvkRMKlswxGUC6mSUy6G_0X8AfM1k3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551044017</pqid></control><display><type>article</type><title>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Uchiyama, Yusuke ; Konno, Hidetoshi</creator><creatorcontrib>Uchiyama, Yusuke ; Konno, Hidetoshi</creatorcontrib><description>Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation. •Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2014.03.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomic structure ; Complex Ginzburg–Landau equation ; Defect turbulence ; Defects ; Fluid dynamics ; Fluid flow ; Local structures ; Long-memory ; Mathematical analysis ; Non-Markovian master equation ; Poisson statistics ; Statistics ; Turbulence ; Turbulent flow</subject><ispartof>Physics letters. A, 2014-04, Vol.378 (20), p.1350-1355</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</citedby><cites>FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2014.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Uchiyama, Yusuke</creatorcontrib><creatorcontrib>Konno, Hidetoshi</creatorcontrib><title>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</title><title>Physics letters. A</title><description>Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation. •Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.</description><subject>Atomic structure</subject><subject>Complex Ginzburg–Landau equation</subject><subject>Defect turbulence</subject><subject>Defects</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Local structures</subject><subject>Long-memory</subject><subject>Mathematical analysis</subject><subject>Non-Markovian master equation</subject><subject>Poisson statistics</subject><subject>Statistics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1uEzEUhS0EEqH0FSovu5nh2p7JxLv-CApSJDbt2vLPdeNoMk5tDyKsqr4Cb9gnwVFgzerqXp1zrs5HyAWDlgFbftq2-80hj1h0y4F1LYgWgL8hC7YaRMM7Lt-SBYihb-QS2HvyIectQHWCXJCXm5DK5vX5t0NdNnSfosWcafR0jFaPNJc02zInzDRM1KFHW2jdzTziZLFesk3BoKPmQMsGaZywcWGHUw5xqgE27vYj_qR3Yfpl5vRYX6315PRM8WnWpYo-kndejxnP_84z8vDl8_3t12b9_e7b7fW6sT2I0jDfadFzYcwKrFwxycH1w8AMcm6lF1I6Cdpy4Tw3xkO3kkwuuektc70fjDgjl6fcWvJpxlzULmSL46gnjHNWrO8ZdB2woUqXJ6lNMeeEXu1T2Ol0UAzUEbraqn_Q1RG6AqEq9Gq8OhmxFvkRMKlswxGUC6mSUy6G_0X8AfM1k3o</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Uchiyama, Yusuke</creator><creator>Konno, Hidetoshi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</title><author>Uchiyama, Yusuke ; Konno, Hidetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic structure</topic><topic>Complex Ginzburg–Landau equation</topic><topic>Defect turbulence</topic><topic>Defects</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Local structures</topic><topic>Long-memory</topic><topic>Mathematical analysis</topic><topic>Non-Markovian master equation</topic><topic>Poisson statistics</topic><topic>Statistics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiyama, Yusuke</creatorcontrib><creatorcontrib>Konno, Hidetoshi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiyama, Yusuke</au><au>Konno, Hidetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</atitle><jtitle>Physics letters. A</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>378</volume><issue>20</issue><spage>1350</spage><epage>1355</epage><pages>1350-1355</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation. •Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2014.03.002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2014-04, Vol.378 (20), p.1350-1355
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1551044017
source Elsevier ScienceDirect Journals Complete
subjects Atomic structure
Complex Ginzburg–Landau equation
Defect turbulence
Defects
Fluid dynamics
Fluid flow
Local structures
Long-memory
Mathematical analysis
Non-Markovian master equation
Poisson statistics
Statistics
Turbulence
Turbulent flow
title Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Birth%E2%80%93death%20process%20of%20local%20structures%20in%20defect%20turbulence%20described%20by%20the%20one-dimensional%20complex%20Ginzburg%E2%80%93Landau%20equation&rft.jtitle=Physics%20letters.%20A&rft.au=Uchiyama,%20Yusuke&rft.date=2014-04-01&rft.volume=378&rft.issue=20&rft.spage=1350&rft.epage=1355&rft.pages=1350-1355&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2014.03.002&rft_dat=%3Cproquest_cross%3E1551044017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551044017&rft_id=info:pmid/&rft_els_id=S0375960114002357&rfr_iscdi=true