Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation
Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary st...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2014-04, Vol.378 (20), p.1350-1355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1355 |
---|---|
container_issue | 20 |
container_start_page | 1350 |
container_title | Physics letters. A |
container_volume | 378 |
creator | Uchiyama, Yusuke Konno, Hidetoshi |
description | Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.
•Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics. |
doi_str_mv | 10.1016/j.physleta.2014.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551044017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960114002357</els_id><sourcerecordid>1551044017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</originalsourceid><addsrcrecordid>eNqFkM1uEzEUhS0EEqH0FSovu5nh2p7JxLv-CApSJDbt2vLPdeNoMk5tDyKsqr4Cb9gnwVFgzerqXp1zrs5HyAWDlgFbftq2-80hj1h0y4F1LYgWgL8hC7YaRMM7Lt-SBYihb-QS2HvyIectQHWCXJCXm5DK5vX5t0NdNnSfosWcafR0jFaPNJc02zInzDRM1KFHW2jdzTziZLFesk3BoKPmQMsGaZywcWGHUw5xqgE27vYj_qR3Yfpl5vRYX6315PRM8WnWpYo-kndejxnP_84z8vDl8_3t12b9_e7b7fW6sT2I0jDfadFzYcwKrFwxycH1w8AMcm6lF1I6Cdpy4Tw3xkO3kkwuuektc70fjDgjl6fcWvJpxlzULmSL46gnjHNWrO8ZdB2woUqXJ6lNMeeEXu1T2Ol0UAzUEbraqn_Q1RG6AqEq9Gq8OhmxFvkRMKlswxGUC6mSUy6G_0X8AfM1k3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551044017</pqid></control><display><type>article</type><title>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Uchiyama, Yusuke ; Konno, Hidetoshi</creator><creatorcontrib>Uchiyama, Yusuke ; Konno, Hidetoshi</creatorcontrib><description>Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.
•Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2014.03.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomic structure ; Complex Ginzburg–Landau equation ; Defect turbulence ; Defects ; Fluid dynamics ; Fluid flow ; Local structures ; Long-memory ; Mathematical analysis ; Non-Markovian master equation ; Poisson statistics ; Statistics ; Turbulence ; Turbulent flow</subject><ispartof>Physics letters. A, 2014-04, Vol.378 (20), p.1350-1355</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</citedby><cites>FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2014.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Uchiyama, Yusuke</creatorcontrib><creatorcontrib>Konno, Hidetoshi</creatorcontrib><title>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</title><title>Physics letters. A</title><description>Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.
•Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.</description><subject>Atomic structure</subject><subject>Complex Ginzburg–Landau equation</subject><subject>Defect turbulence</subject><subject>Defects</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Local structures</subject><subject>Long-memory</subject><subject>Mathematical analysis</subject><subject>Non-Markovian master equation</subject><subject>Poisson statistics</subject><subject>Statistics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1uEzEUhS0EEqH0FSovu5nh2p7JxLv-CApSJDbt2vLPdeNoMk5tDyKsqr4Cb9gnwVFgzerqXp1zrs5HyAWDlgFbftq2-80hj1h0y4F1LYgWgL8hC7YaRMM7Lt-SBYihb-QS2HvyIectQHWCXJCXm5DK5vX5t0NdNnSfosWcafR0jFaPNJc02zInzDRM1KFHW2jdzTziZLFesk3BoKPmQMsGaZywcWGHUw5xqgE27vYj_qR3Yfpl5vRYX6315PRM8WnWpYo-kndejxnP_84z8vDl8_3t12b9_e7b7fW6sT2I0jDfadFzYcwKrFwxycH1w8AMcm6lF1I6Cdpy4Tw3xkO3kkwuuektc70fjDgjl6fcWvJpxlzULmSL46gnjHNWrO8ZdB2woUqXJ6lNMeeEXu1T2Ol0UAzUEbraqn_Q1RG6AqEq9Gq8OhmxFvkRMKlswxGUC6mSUy6G_0X8AfM1k3o</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Uchiyama, Yusuke</creator><creator>Konno, Hidetoshi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</title><author>Uchiyama, Yusuke ; Konno, Hidetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-1f4a3523bb80c981920d5771be22c9f399d90ac23df2bbf04891962b5c1d5f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic structure</topic><topic>Complex Ginzburg–Landau equation</topic><topic>Defect turbulence</topic><topic>Defects</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Local structures</topic><topic>Long-memory</topic><topic>Mathematical analysis</topic><topic>Non-Markovian master equation</topic><topic>Poisson statistics</topic><topic>Statistics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiyama, Yusuke</creatorcontrib><creatorcontrib>Konno, Hidetoshi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiyama, Yusuke</au><au>Konno, Hidetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation</atitle><jtitle>Physics letters. A</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>378</volume><issue>20</issue><spage>1350</spage><epage>1355</epage><pages>1350-1355</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.
•Defect turbulence with composite local structures is studied in the 1D CGLE.•The local structures are identified as defects, holes, and MAWs.•Number fluctuations of the local structures are subjected to the Poisson statistics.•Interarrival times of the local structures exhibit power-laws with some peaks.•A non-Markovian master equation mimics successfully the stochastic dynamics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2014.03.002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2014-04, Vol.378 (20), p.1350-1355 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551044017 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atomic structure Complex Ginzburg–Landau equation Defect turbulence Defects Fluid dynamics Fluid flow Local structures Long-memory Mathematical analysis Non-Markovian master equation Poisson statistics Statistics Turbulence Turbulent flow |
title | Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Birth%E2%80%93death%20process%20of%20local%20structures%20in%20defect%20turbulence%20described%20by%20the%20one-dimensional%20complex%20Ginzburg%E2%80%93Landau%20equation&rft.jtitle=Physics%20letters.%20A&rft.au=Uchiyama,%20Yusuke&rft.date=2014-04-01&rft.volume=378&rft.issue=20&rft.spage=1350&rft.epage=1355&rft.pages=1350-1355&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2014.03.002&rft_dat=%3Cproquest_cross%3E1551044017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551044017&rft_id=info:pmid/&rft_els_id=S0375960114002357&rfr_iscdi=true |