A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets
Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable va...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2014-04, Vol.75 (4), p.595-606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 4 |
container_start_page | 595 |
container_title | Automation and remote control |
container_volume | 75 |
creator | Galashov, A. E. Kel’manov, A. V. |
description | Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets. |
doi_str_mv | 10.1134/S0005117914040018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551041558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551041558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbjlyKVgJ23XHqeJfxISB0AcqzR1tk5tM5J0Yt-eVOOGxMWW5d-z_B5j1wi3iDK9ewOADHFRYgopABYnbIY5FIkEKU7ZbFon0_6cXXi_jQSCkDP2ueQiUbuds99trwJx1a2ta8Om58Fyb7s9cTsQj0DdUc-t4WFD3Ki-7Q7T1LR-a9sh8D3pYB33Y-0p-Et2ZlTn6eq3z9nHw_376il5eX18Xi1fEi0FhiQHYzKjBYqmqQupdZ1LTUYuclAEKmsyUeqsxFIUCwGyhKIsytqIRkEuapXLObs53o0Pfo3kQ9W3XlPXqYHs6CvMMoQ01iKieES1s947MtXORc_uUCFUU4jVnxCjRhw1PrLDmly1taMboqN_RD9Y2HMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551041558</pqid></control><display><type>article</type><title>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</title><source>SpringerNature Journals</source><creator>Galashov, A. E. ; Kel’manov, A. V.</creator><creatorcontrib>Galashov, A. E. ; Kel’manov, A. V.</creatorcontrib><description>Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117914040018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Automation ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Criteria ; Mathematical analysis ; Mathematical Programming Problems ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Polynomials ; Remote control ; Robotics ; Searching ; Systems Theory ; Vectors (mathematics)</subject><ispartof>Automation and remote control, 2014-04, Vol.75 (4), p.595-606</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</citedby><cites>FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117914040018$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117914040018$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Galashov, A. E.</creatorcontrib><creatorcontrib>Kel’manov, A. V.</creatorcontrib><title>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.</description><subject>Algorithms</subject><subject>Automation</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Criteria</subject><subject>Mathematical analysis</subject><subject>Mathematical Programming Problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Polynomials</subject><subject>Remote control</subject><subject>Robotics</subject><subject>Searching</subject><subject>Systems Theory</subject><subject>Vectors (mathematics)</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbjlyKVgJ23XHqeJfxISB0AcqzR1tk5tM5J0Yt-eVOOGxMWW5d-z_B5j1wi3iDK9ewOADHFRYgopABYnbIY5FIkEKU7ZbFon0_6cXXi_jQSCkDP2ueQiUbuds99trwJx1a2ta8Om58Fyb7s9cTsQj0DdUc-t4WFD3Ki-7Q7T1LR-a9sh8D3pYB33Y-0p-Et2ZlTn6eq3z9nHw_376il5eX18Xi1fEi0FhiQHYzKjBYqmqQupdZ1LTUYuclAEKmsyUeqsxFIUCwGyhKIsytqIRkEuapXLObs53o0Pfo3kQ9W3XlPXqYHs6CvMMoQ01iKieES1s947MtXORc_uUCFUU4jVnxCjRhw1PrLDmly1taMboqN_RD9Y2HMm</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Galashov, A. E.</creator><creator>Kel’manov, A. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</title><author>Galashov, A. E. ; Kel’manov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Criteria</topic><topic>Mathematical analysis</topic><topic>Mathematical Programming Problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Polynomials</topic><topic>Remote control</topic><topic>Robotics</topic><topic>Searching</topic><topic>Systems Theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galashov, A. E.</creatorcontrib><creatorcontrib>Kel’manov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galashov, A. E.</au><au>Kel’manov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>75</volume><issue>4</issue><spage>595</spage><epage>606</epage><pages>595-606</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117914040018</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2014-04, Vol.75 (4), p.595-606 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551041558 |
source | SpringerNature Journals |
subjects | Algorithms Automation CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Criteria Mathematical analysis Mathematical Programming Problems Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Polynomials Remote control Robotics Searching Systems Theory Vectors (mathematics) |
title | A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202-approximate%20algorithm%20to%20solve%20one%20problem%20of%20the%20family%20of%20disjoint%20vector%20subsets&rft.jtitle=Automation%20and%20remote%20control&rft.au=Galashov,%20A.%20E.&rft.date=2014-04-01&rft.volume=75&rft.issue=4&rft.spage=595&rft.epage=606&rft.pages=595-606&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117914040018&rft_dat=%3Cproquest_cross%3E1551041558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551041558&rft_id=info:pmid/&rfr_iscdi=true |