A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets

Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2014-04, Vol.75 (4), p.595-606
Hauptverfasser: Galashov, A. E., Kel’manov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 4
container_start_page 595
container_title Automation and remote control
container_volume 75
creator Galashov, A. E.
Kel’manov, A. V.
description Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.
doi_str_mv 10.1134/S0005117914040018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551041558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551041558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbjlyKVgJ23XHqeJfxISB0AcqzR1tk5tM5J0Yt-eVOOGxMWW5d-z_B5j1wi3iDK9ewOADHFRYgopABYnbIY5FIkEKU7ZbFon0_6cXXi_jQSCkDP2ueQiUbuds99trwJx1a2ta8Om58Fyb7s9cTsQj0DdUc-t4WFD3Ki-7Q7T1LR-a9sh8D3pYB33Y-0p-Et2ZlTn6eq3z9nHw_376il5eX18Xi1fEi0FhiQHYzKjBYqmqQupdZ1LTUYuclAEKmsyUeqsxFIUCwGyhKIsytqIRkEuapXLObs53o0Pfo3kQ9W3XlPXqYHs6CvMMoQ01iKieES1s947MtXORc_uUCFUU4jVnxCjRhw1PrLDmly1taMboqN_RD9Y2HMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551041558</pqid></control><display><type>article</type><title>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</title><source>SpringerNature Journals</source><creator>Galashov, A. E. ; Kel’manov, A. V.</creator><creatorcontrib>Galashov, A. E. ; Kel’manov, A. V.</creatorcontrib><description>Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117914040018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Automation ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Criteria ; Mathematical analysis ; Mathematical Programming Problems ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Polynomials ; Remote control ; Robotics ; Searching ; Systems Theory ; Vectors (mathematics)</subject><ispartof>Automation and remote control, 2014-04, Vol.75 (4), p.595-606</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</citedby><cites>FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117914040018$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117914040018$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Galashov, A. E.</creatorcontrib><creatorcontrib>Kel’manov, A. V.</creatorcontrib><title>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.</description><subject>Algorithms</subject><subject>Automation</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Criteria</subject><subject>Mathematical analysis</subject><subject>Mathematical Programming Problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Polynomials</subject><subject>Remote control</subject><subject>Robotics</subject><subject>Searching</subject><subject>Systems Theory</subject><subject>Vectors (mathematics)</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbjlyKVgJ23XHqeJfxISB0AcqzR1tk5tM5J0Yt-eVOOGxMWW5d-z_B5j1wi3iDK9ewOADHFRYgopABYnbIY5FIkEKU7ZbFon0_6cXXi_jQSCkDP2ueQiUbuds99trwJx1a2ta8Om58Fyb7s9cTsQj0DdUc-t4WFD3Ki-7Q7T1LR-a9sh8D3pYB33Y-0p-Et2ZlTn6eq3z9nHw_376il5eX18Xi1fEi0FhiQHYzKjBYqmqQupdZ1LTUYuclAEKmsyUeqsxFIUCwGyhKIsytqIRkEuapXLObs53o0Pfo3kQ9W3XlPXqYHs6CvMMoQ01iKieES1s947MtXORc_uUCFUU4jVnxCjRhw1PrLDmly1taMboqN_RD9Y2HMm</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Galashov, A. E.</creator><creator>Kel’manov, A. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</title><author>Galashov, A. E. ; Kel’manov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-60ff5fc212ddb83ccb63cef3760ae0a5d529c5919287203908989bf2da062ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Criteria</topic><topic>Mathematical analysis</topic><topic>Mathematical Programming Problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Polynomials</topic><topic>Remote control</topic><topic>Robotics</topic><topic>Searching</topic><topic>Systems Theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galashov, A. E.</creatorcontrib><creatorcontrib>Kel’manov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galashov, A. E.</au><au>Kel’manov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>75</volume><issue>4</issue><spage>595</spage><epage>606</epage><pages>595-606</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>Consideration was given to the problem of seeking a family of disjoint subsets of given cardinalities in a finite set of Euclidean space vectors. The minimal sum of the squared distances from the subset elements to their centers was used as the search criterion. The subset centers are optimizable variables defined as the mean values over the elements of the required subsets. The problem was shown to be NP-hard in the strong sense. To solve it, a 2-approximate algorithm was proposed which is polynomial for a fixed number of the desired subsets.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117914040018</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2014-04, Vol.75 (4), p.595-606
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_miscellaneous_1551041558
source SpringerNature Journals
subjects Algorithms
Automation
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Criteria
Mathematical analysis
Mathematical Programming Problems
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Polynomials
Remote control
Robotics
Searching
Systems Theory
Vectors (mathematics)
title A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202-approximate%20algorithm%20to%20solve%20one%20problem%20of%20the%20family%20of%20disjoint%20vector%20subsets&rft.jtitle=Automation%20and%20remote%20control&rft.au=Galashov,%20A.%20E.&rft.date=2014-04-01&rft.volume=75&rft.issue=4&rft.spage=595&rft.epage=606&rft.pages=595-606&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117914040018&rft_dat=%3Cproquest_cross%3E1551041558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551041558&rft_id=info:pmid/&rfr_iscdi=true