Characterizing Web APIs Combining Supervised Topic Model with Ontology

This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE transactions on information and systems 2013-01, Vol.E96.D (7), p.1548-1551
Hauptverfasser: Han, Yuanbin, Chen, Shizhan, Feng, Zhiyong
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1551
container_issue 7
container_start_page 1548
container_title IEICE transactions on information and systems
container_volume E96.D
creator Han, Yuanbin
Chen, Shizhan
Feng, Zhiyong
description This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.
doi_str_mv 10.1587/transinf.E96.D.1548
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551040388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551040388</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1348-c3f963e728c0f684e595edb8d223108f1cbd200056a7eb7a149f8ac932ce8cf13</originalsourceid><addsrcrecordid>eNotzE9LwzAYgPEgCpa5T-AlRy-defOnTY6jbm4wmeDE40jTN1uka2bTKfrpVfT0wO_wEHINbAJKl7dDb7sUOj-ZmWJy92NSn5EMSqlyEAWck4wZKHKtBL8k45RCzZTQgpfSZGRe7W1v3YB9-Ardjr5gTaePy0SreKhD90tPpyP27yFhQzfxGBx9iA229CMMe7ruhtjG3ecVufC2TTj-74g8z2ebapGv1vfLarrKX0FInTvhTSGw5NoxX2iJyihsat1wLoBpD65uOGNMFbbEurQgjdfWGcEdaudBjMjN3_fYx7cTpmF7CMlh29oO4yltQSlgkgmtxTfEa1JH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551040388</pqid></control><display><type>article</type><title>Characterizing Web APIs Combining Supervised Topic Model with Ontology</title><source>J-STAGE (Free - Japanese)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Han, Yuanbin ; Chen, Shizhan ; Feng, Zhiyong</creator><creatorcontrib>Han, Yuanbin ; Chen, Shizhan ; Feng, Zhiyong</creatorcontrib><description>This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.E96.D.1548</identifier><language>jpn</language><subject>API ; Classification ; Conduction ; Gain ; Management ; Matching ; Similarity</subject><ispartof>IEICE transactions on information and systems, 2013-01, Vol.E96.D (7), p.1548-1551</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Han, Yuanbin</creatorcontrib><creatorcontrib>Chen, Shizhan</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><title>Characterizing Web APIs Combining Supervised Topic Model with Ontology</title><title>IEICE transactions on information and systems</title><description>This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.</description><subject>API</subject><subject>Classification</subject><subject>Conduction</subject><subject>Gain</subject><subject>Management</subject><subject>Matching</subject><subject>Similarity</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotzE9LwzAYgPEgCpa5T-AlRy-defOnTY6jbm4wmeDE40jTN1uka2bTKfrpVfT0wO_wEHINbAJKl7dDb7sUOj-ZmWJy92NSn5EMSqlyEAWck4wZKHKtBL8k45RCzZTQgpfSZGRe7W1v3YB9-Ardjr5gTaePy0SreKhD90tPpyP27yFhQzfxGBx9iA229CMMe7ruhtjG3ecVufC2TTj-74g8z2ebapGv1vfLarrKX0FInTvhTSGw5NoxX2iJyihsat1wLoBpD65uOGNMFbbEurQgjdfWGcEdaudBjMjN3_fYx7cTpmF7CMlh29oO4yltQSlgkgmtxTfEa1JH</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Han, Yuanbin</creator><creator>Chen, Shizhan</creator><creator>Feng, Zhiyong</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Characterizing Web APIs Combining Supervised Topic Model with Ontology</title><author>Han, Yuanbin ; Chen, Shizhan ; Feng, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1348-c3f963e728c0f684e595edb8d223108f1cbd200056a7eb7a149f8ac932ce8cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2013</creationdate><topic>API</topic><topic>Classification</topic><topic>Conduction</topic><topic>Gain</topic><topic>Management</topic><topic>Matching</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yuanbin</creatorcontrib><creatorcontrib>Chen, Shizhan</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE transactions on information and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yuanbin</au><au>Chen, Shizhan</au><au>Feng, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Web APIs Combining Supervised Topic Model with Ontology</atitle><jtitle>IEICE transactions on information and systems</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>E96.D</volume><issue>7</issue><spage>1548</spage><epage>1551</epage><pages>1548-1551</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.</abstract><doi>10.1587/transinf.E96.D.1548</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE transactions on information and systems, 2013-01, Vol.E96.D (7), p.1548-1551
issn 0916-8532
1745-1361
language jpn
recordid cdi_proquest_miscellaneous_1551040388
source J-STAGE (Free - Japanese); Free E-Journal (出版社公開部分のみ)
subjects API
Classification
Conduction
Gain
Management
Matching
Similarity
title Characterizing Web APIs Combining Supervised Topic Model with Ontology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Web%20APIs%20Combining%20Supervised%20Topic%20Model%20with%20Ontology&rft.jtitle=IEICE%20transactions%20on%20information%20and%20systems&rft.au=Han,%20Yuanbin&rft.date=2013-01-01&rft.volume=E96.D&rft.issue=7&rft.spage=1548&rft.epage=1551&rft.pages=1548-1551&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.E96.D.1548&rft_dat=%3Cproquest%3E1551040388%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551040388&rft_id=info:pmid/&rfr_iscdi=true