Characterizing Web APIs Combining Supervised Topic Model with Ontology
This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM...
Gespeichert in:
Veröffentlicht in: | IEICE transactions on information and systems 2013-01, Vol.E96.D (7), p.1548-1551 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1551 |
---|---|
container_issue | 7 |
container_start_page | 1548 |
container_title | IEICE transactions on information and systems |
container_volume | E96.D |
creator | Han, Yuanbin Chen, Shizhan Feng, Zhiyong |
description | This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology. |
doi_str_mv | 10.1587/transinf.E96.D.1548 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551040388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551040388</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1348-c3f963e728c0f684e595edb8d223108f1cbd200056a7eb7a149f8ac932ce8cf13</originalsourceid><addsrcrecordid>eNotzE9LwzAYgPEgCpa5T-AlRy-defOnTY6jbm4wmeDE40jTN1uka2bTKfrpVfT0wO_wEHINbAJKl7dDb7sUOj-ZmWJy92NSn5EMSqlyEAWck4wZKHKtBL8k45RCzZTQgpfSZGRe7W1v3YB9-Ardjr5gTaePy0SreKhD90tPpyP27yFhQzfxGBx9iA229CMMe7ruhtjG3ecVufC2TTj-74g8z2ebapGv1vfLarrKX0FInTvhTSGw5NoxX2iJyihsat1wLoBpD65uOGNMFbbEurQgjdfWGcEdaudBjMjN3_fYx7cTpmF7CMlh29oO4yltQSlgkgmtxTfEa1JH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551040388</pqid></control><display><type>article</type><title>Characterizing Web APIs Combining Supervised Topic Model with Ontology</title><source>J-STAGE (Free - Japanese)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Han, Yuanbin ; Chen, Shizhan ; Feng, Zhiyong</creator><creatorcontrib>Han, Yuanbin ; Chen, Shizhan ; Feng, Zhiyong</creatorcontrib><description>This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.E96.D.1548</identifier><language>jpn</language><subject>API ; Classification ; Conduction ; Gain ; Management ; Matching ; Similarity</subject><ispartof>IEICE transactions on information and systems, 2013-01, Vol.E96.D (7), p.1548-1551</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Han, Yuanbin</creatorcontrib><creatorcontrib>Chen, Shizhan</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><title>Characterizing Web APIs Combining Supervised Topic Model with Ontology</title><title>IEICE transactions on information and systems</title><description>This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.</description><subject>API</subject><subject>Classification</subject><subject>Conduction</subject><subject>Gain</subject><subject>Management</subject><subject>Matching</subject><subject>Similarity</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotzE9LwzAYgPEgCpa5T-AlRy-defOnTY6jbm4wmeDE40jTN1uka2bTKfrpVfT0wO_wEHINbAJKl7dDb7sUOj-ZmWJy92NSn5EMSqlyEAWck4wZKHKtBL8k45RCzZTQgpfSZGRe7W1v3YB9-Ardjr5gTaePy0SreKhD90tPpyP27yFhQzfxGBx9iA229CMMe7ruhtjG3ecVufC2TTj-74g8z2ebapGv1vfLarrKX0FInTvhTSGw5NoxX2iJyihsat1wLoBpD65uOGNMFbbEurQgjdfWGcEdaudBjMjN3_fYx7cTpmF7CMlh29oO4yltQSlgkgmtxTfEa1JH</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Han, Yuanbin</creator><creator>Chen, Shizhan</creator><creator>Feng, Zhiyong</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Characterizing Web APIs Combining Supervised Topic Model with Ontology</title><author>Han, Yuanbin ; Chen, Shizhan ; Feng, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1348-c3f963e728c0f684e595edb8d223108f1cbd200056a7eb7a149f8ac932ce8cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2013</creationdate><topic>API</topic><topic>Classification</topic><topic>Conduction</topic><topic>Gain</topic><topic>Management</topic><topic>Matching</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yuanbin</creatorcontrib><creatorcontrib>Chen, Shizhan</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE transactions on information and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yuanbin</au><au>Chen, Shizhan</au><au>Feng, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Web APIs Combining Supervised Topic Model with Ontology</atitle><jtitle>IEICE transactions on information and systems</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>E96.D</volume><issue>7</issue><spage>1548</spage><epage>1551</epage><pages>1548-1551</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.</abstract><doi>10.1587/transinf.E96.D.1548</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE transactions on information and systems, 2013-01, Vol.E96.D (7), p.1548-1551 |
issn | 0916-8532 1745-1361 |
language | jpn |
recordid | cdi_proquest_miscellaneous_1551040388 |
source | J-STAGE (Free - Japanese); Free E-Journal (出版社公開部分のみ) |
subjects | API Classification Conduction Gain Management Matching Similarity |
title | Characterizing Web APIs Combining Supervised Topic Model with Ontology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Web%20APIs%20Combining%20Supervised%20Topic%20Model%20with%20Ontology&rft.jtitle=IEICE%20transactions%20on%20information%20and%20systems&rft.au=Han,%20Yuanbin&rft.date=2013-01-01&rft.volume=E96.D&rft.issue=7&rft.spage=1548&rft.epage=1551&rft.pages=1548-1551&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.E96.D.1548&rft_dat=%3Cproquest%3E1551040388%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551040388&rft_id=info:pmid/&rfr_iscdi=true |