OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase

RATIONALE:Increased arginase activity contributes to endothelial dysfunction by competition for L-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2014-08, Vol.115 (4), p.450-459
Hauptverfasser: Pandey, Deepesh, Bhunia, Anil, Oh, Young Jun, Chang, Fumin, Bergman, Yehudit, Kim, Jae Hyung, Serbo, Janna, Boronina, Tatiana N, Cole, Robert N, Van Eyk, Jennifer, Remaley, Alan T, Berkowitz, Dan E, Romer, Lewis H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 4
container_start_page 450
container_title Circulation research
container_volume 115
creator Pandey, Deepesh
Bhunia, Anil
Oh, Young Jun
Chang, Fumin
Bergman, Yehudit
Kim, Jae Hyung
Serbo, Janna
Boronina, Tatiana N
Cole, Robert N
Van Eyk, Jennifer
Remaley, Alan T
Berkowitz, Dan E
Romer, Lewis H
description RATIONALE:Increased arginase activity contributes to endothelial dysfunction by competition for L-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. OBJECTIVE:To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. METHODS AND RESULTS:OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2 mice bred on an ApoE background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE controls. CONCLUSIONS:These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.
doi_str_mv 10.1161/CIRCRESAHA.115.304262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551024330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551024330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4582-7e431573053bcb01e1ef180f101ebbc733617b956a011e5a55c42297c22de1a43</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EoqHwE0A-ctni8Ue2e1wtgVYEpQrlvPJ6ZzcGxw62Q-HGT8dVChw52TN65rXnIeQlsAuAJbzprrfddvWpvWpLrS4Ek3zJH5EFKC4rqWp4TBaMsaaqhWBn5FlKXxgDKXjzlJxx2TABTCzIr82P9ds1vY12njEmusUcwxz1iKWnfXLB6GyDp2GibZyt1wk5tZ62IWZr6MqPIe_QWe1oh84l-t1qut10H6j2I_1oczC74Md4D9zEYDAl62d6g4dsxxL2nDyZtEv44uE8J5_frW67q2q9eX_dtevKSHXJqxqlAFULpsRgBgYIOMElm6Bch8GUJZdQD41aagaASitlJOdNbTgfEbQU5-T1KfcQw7cjptzvbTLlx9pjOKYelALGZZFVUHVCTQwpRZz6Q7R7HX_2wPp7-f0_-aVW_Ul-mXv18MRx2OP4d-qP7QI0J-AuuFxsf3XHO4z9DrXLu_-E_wYdWZKx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551024330</pqid></control><display><type>article</type><title>OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pandey, Deepesh ; Bhunia, Anil ; Oh, Young Jun ; Chang, Fumin ; Bergman, Yehudit ; Kim, Jae Hyung ; Serbo, Janna ; Boronina, Tatiana N ; Cole, Robert N ; Van Eyk, Jennifer ; Remaley, Alan T ; Berkowitz, Dan E ; Romer, Lewis H</creator><creatorcontrib>Pandey, Deepesh ; Bhunia, Anil ; Oh, Young Jun ; Chang, Fumin ; Bergman, Yehudit ; Kim, Jae Hyung ; Serbo, Janna ; Boronina, Tatiana N ; Cole, Robert N ; Van Eyk, Jennifer ; Remaley, Alan T ; Berkowitz, Dan E ; Romer, Lewis H</creatorcontrib><description>RATIONALE:Increased arginase activity contributes to endothelial dysfunction by competition for L-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. OBJECTIVE:To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. METHODS AND RESULTS:OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2 mice bred on an ApoE background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE controls. CONCLUSIONS:These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.115.304262</identifier><identifier>PMID: 24903103</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Amino Acid Sequence ; Animals ; Aorta - drug effects ; Aorta - enzymology ; Aorta - pathology ; Aorta - physiopathology ; Aortic Diseases - enzymology ; Aortic Diseases - genetics ; Aortic Diseases - pathology ; Aortic Diseases - physiopathology ; Aortic Diseases - prevention &amp; control ; Apolipoproteins E - deficiency ; Apolipoproteins E - genetics ; Arginase - genetics ; Arginase - metabolism ; Atherosclerosis - enzymology ; Atherosclerosis - genetics ; Atherosclerosis - pathology ; Atherosclerosis - physiopathology ; Atherosclerosis - prevention &amp; control ; Cells, Cultured ; Cytosol - enzymology ; Disease Models, Animal ; Endothelial Cells - drug effects ; Endothelial Cells - enzymology ; Enzyme Activation ; Humans ; Lipoproteins, LDL - metabolism ; Male ; Metalloendopeptidases - antagonists &amp; inhibitors ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Mitochondria - drug effects ; Mitochondria - enzymology ; Mitochondrial Processing Peptidase ; Molecular Sequence Data ; Protein Kinase Inhibitors - pharmacology ; Protein Transport ; rho-Associated Kinases - antagonists &amp; inhibitors ; rho-Associated Kinases - metabolism ; RNA Interference ; Scavenger Receptors, Class E - deficiency ; Scavenger Receptors, Class E - genetics ; Signal Transduction ; Time Factors ; Transfection</subject><ispartof>Circulation research, 2014-08, Vol.115 (4), p.450-459</ispartof><rights>2014 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4582-7e431573053bcb01e1ef180f101ebbc733617b956a011e5a55c42297c22de1a43</citedby><cites>FETCH-LOGICAL-c4582-7e431573053bcb01e1ef180f101ebbc733617b956a011e5a55c42297c22de1a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3687,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24903103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Deepesh</creatorcontrib><creatorcontrib>Bhunia, Anil</creatorcontrib><creatorcontrib>Oh, Young Jun</creatorcontrib><creatorcontrib>Chang, Fumin</creatorcontrib><creatorcontrib>Bergman, Yehudit</creatorcontrib><creatorcontrib>Kim, Jae Hyung</creatorcontrib><creatorcontrib>Serbo, Janna</creatorcontrib><creatorcontrib>Boronina, Tatiana N</creatorcontrib><creatorcontrib>Cole, Robert N</creatorcontrib><creatorcontrib>Van Eyk, Jennifer</creatorcontrib><creatorcontrib>Remaley, Alan T</creatorcontrib><creatorcontrib>Berkowitz, Dan E</creatorcontrib><creatorcontrib>Romer, Lewis H</creatorcontrib><title>OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Increased arginase activity contributes to endothelial dysfunction by competition for L-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. OBJECTIVE:To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. METHODS AND RESULTS:OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2 mice bred on an ApoE background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE controls. CONCLUSIONS:These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Aorta - drug effects</subject><subject>Aorta - enzymology</subject><subject>Aorta - pathology</subject><subject>Aorta - physiopathology</subject><subject>Aortic Diseases - enzymology</subject><subject>Aortic Diseases - genetics</subject><subject>Aortic Diseases - pathology</subject><subject>Aortic Diseases - physiopathology</subject><subject>Aortic Diseases - prevention &amp; control</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - genetics</subject><subject>Arginase - genetics</subject><subject>Arginase - metabolism</subject><subject>Atherosclerosis - enzymology</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - pathology</subject><subject>Atherosclerosis - physiopathology</subject><subject>Atherosclerosis - prevention &amp; control</subject><subject>Cells, Cultured</subject><subject>Cytosol - enzymology</subject><subject>Disease Models, Animal</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - enzymology</subject><subject>Enzyme Activation</subject><subject>Humans</subject><subject>Lipoproteins, LDL - metabolism</subject><subject>Male</subject><subject>Metalloendopeptidases - antagonists &amp; inhibitors</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondrial Processing Peptidase</subject><subject>Molecular Sequence Data</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Transport</subject><subject>rho-Associated Kinases - antagonists &amp; inhibitors</subject><subject>rho-Associated Kinases - metabolism</subject><subject>RNA Interference</subject><subject>Scavenger Receptors, Class E - deficiency</subject><subject>Scavenger Receptors, Class E - genetics</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1vEzEQhi0EoqHwE0A-ctni8Ue2e1wtgVYEpQrlvPJ6ZzcGxw62Q-HGT8dVChw52TN65rXnIeQlsAuAJbzprrfddvWpvWpLrS4Ek3zJH5EFKC4rqWp4TBaMsaaqhWBn5FlKXxgDKXjzlJxx2TABTCzIr82P9ds1vY12njEmusUcwxz1iKWnfXLB6GyDp2GibZyt1wk5tZ62IWZr6MqPIe_QWe1oh84l-t1qut10H6j2I_1oczC74Md4D9zEYDAl62d6g4dsxxL2nDyZtEv44uE8J5_frW67q2q9eX_dtevKSHXJqxqlAFULpsRgBgYIOMElm6Bch8GUJZdQD41aagaASitlJOdNbTgfEbQU5-T1KfcQw7cjptzvbTLlx9pjOKYelALGZZFVUHVCTQwpRZz6Q7R7HX_2wPp7-f0_-aVW_Ul-mXv18MRx2OP4d-qP7QI0J-AuuFxsf3XHO4z9DrXLu_-E_wYdWZKx</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Pandey, Deepesh</creator><creator>Bhunia, Anil</creator><creator>Oh, Young Jun</creator><creator>Chang, Fumin</creator><creator>Bergman, Yehudit</creator><creator>Kim, Jae Hyung</creator><creator>Serbo, Janna</creator><creator>Boronina, Tatiana N</creator><creator>Cole, Robert N</creator><creator>Van Eyk, Jennifer</creator><creator>Remaley, Alan T</creator><creator>Berkowitz, Dan E</creator><creator>Romer, Lewis H</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140801</creationdate><title>OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase</title><author>Pandey, Deepesh ; Bhunia, Anil ; Oh, Young Jun ; Chang, Fumin ; Bergman, Yehudit ; Kim, Jae Hyung ; Serbo, Janna ; Boronina, Tatiana N ; Cole, Robert N ; Van Eyk, Jennifer ; Remaley, Alan T ; Berkowitz, Dan E ; Romer, Lewis H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4582-7e431573053bcb01e1ef180f101ebbc733617b956a011e5a55c42297c22de1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Aorta - drug effects</topic><topic>Aorta - enzymology</topic><topic>Aorta - pathology</topic><topic>Aorta - physiopathology</topic><topic>Aortic Diseases - enzymology</topic><topic>Aortic Diseases - genetics</topic><topic>Aortic Diseases - pathology</topic><topic>Aortic Diseases - physiopathology</topic><topic>Aortic Diseases - prevention &amp; control</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - genetics</topic><topic>Arginase - genetics</topic><topic>Arginase - metabolism</topic><topic>Atherosclerosis - enzymology</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - pathology</topic><topic>Atherosclerosis - physiopathology</topic><topic>Atherosclerosis - prevention &amp; control</topic><topic>Cells, Cultured</topic><topic>Cytosol - enzymology</topic><topic>Disease Models, Animal</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - enzymology</topic><topic>Enzyme Activation</topic><topic>Humans</topic><topic>Lipoproteins, LDL - metabolism</topic><topic>Male</topic><topic>Metalloendopeptidases - antagonists &amp; inhibitors</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondrial Processing Peptidase</topic><topic>Molecular Sequence Data</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Transport</topic><topic>rho-Associated Kinases - antagonists &amp; inhibitors</topic><topic>rho-Associated Kinases - metabolism</topic><topic>RNA Interference</topic><topic>Scavenger Receptors, Class E - deficiency</topic><topic>Scavenger Receptors, Class E - genetics</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Deepesh</creatorcontrib><creatorcontrib>Bhunia, Anil</creatorcontrib><creatorcontrib>Oh, Young Jun</creatorcontrib><creatorcontrib>Chang, Fumin</creatorcontrib><creatorcontrib>Bergman, Yehudit</creatorcontrib><creatorcontrib>Kim, Jae Hyung</creatorcontrib><creatorcontrib>Serbo, Janna</creatorcontrib><creatorcontrib>Boronina, Tatiana N</creatorcontrib><creatorcontrib>Cole, Robert N</creatorcontrib><creatorcontrib>Van Eyk, Jennifer</creatorcontrib><creatorcontrib>Remaley, Alan T</creatorcontrib><creatorcontrib>Berkowitz, Dan E</creatorcontrib><creatorcontrib>Romer, Lewis H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Deepesh</au><au>Bhunia, Anil</au><au>Oh, Young Jun</au><au>Chang, Fumin</au><au>Bergman, Yehudit</au><au>Kim, Jae Hyung</au><au>Serbo, Janna</au><au>Boronina, Tatiana N</au><au>Cole, Robert N</au><au>Van Eyk, Jennifer</au><au>Remaley, Alan T</au><au>Berkowitz, Dan E</au><au>Romer, Lewis H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>115</volume><issue>4</issue><spage>450</spage><epage>459</epage><pages>450-459</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:Increased arginase activity contributes to endothelial dysfunction by competition for L-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. OBJECTIVE:To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. METHODS AND RESULTS:OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2 mice bred on an ApoE background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE controls. CONCLUSIONS:These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>24903103</pmid><doi>10.1161/CIRCRESAHA.115.304262</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2014-08, Vol.115 (4), p.450-459
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_1551024330
source MEDLINE; American Heart Association Journals; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals
subjects Amino Acid Sequence
Animals
Aorta - drug effects
Aorta - enzymology
Aorta - pathology
Aorta - physiopathology
Aortic Diseases - enzymology
Aortic Diseases - genetics
Aortic Diseases - pathology
Aortic Diseases - physiopathology
Aortic Diseases - prevention & control
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Arginase - genetics
Arginase - metabolism
Atherosclerosis - enzymology
Atherosclerosis - genetics
Atherosclerosis - pathology
Atherosclerosis - physiopathology
Atherosclerosis - prevention & control
Cells, Cultured
Cytosol - enzymology
Disease Models, Animal
Endothelial Cells - drug effects
Endothelial Cells - enzymology
Enzyme Activation
Humans
Lipoproteins, LDL - metabolism
Male
Metalloendopeptidases - antagonists & inhibitors
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Mitochondria - drug effects
Mitochondria - enzymology
Mitochondrial Processing Peptidase
Molecular Sequence Data
Protein Kinase Inhibitors - pharmacology
Protein Transport
rho-Associated Kinases - antagonists & inhibitors
rho-Associated Kinases - metabolism
RNA Interference
Scavenger Receptors, Class E - deficiency
Scavenger Receptors, Class E - genetics
Signal Transduction
Time Factors
Transfection
title OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OxLDL%20Triggers%20Retrograde%20Translocation%20of%20Arginase2%20in%20Aortic%20Endothelial%20Cells%20via%20ROCK%20and%20Mitochondrial%20Processing%20Peptidase&rft.jtitle=Circulation%20research&rft.au=Pandey,%20Deepesh&rft.date=2014-08-01&rft.volume=115&rft.issue=4&rft.spage=450&rft.epage=459&rft.pages=450-459&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.115.304262&rft_dat=%3Cproquest_cross%3E1551024330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551024330&rft_id=info:pmid/24903103&rfr_iscdi=true