Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus
Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulatio...
Gespeichert in:
Veröffentlicht in: | Marine genomics 2014-04, Vol.14, p.17-22 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 17 |
container_title | Marine genomics |
container_volume | 14 |
creator | Bouget, François-Yves Lefranc, Marc Thommen, Quentin Pfeuty, Benjamin Lozano, Jean-Claude Schatt, Philippe Botebol, Hugo Vergé, Valérie |
description | Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined.
Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment. |
doi_str_mv | 10.1016/j.margen.2014.01.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551023327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1874778714000051</els_id><sourcerecordid>1551023327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoVqvfQGSPXnZNsskm9SCU4j8o9FLPIc1OJHW7qZndgt_e1aoHD55m4L03j_kRcsFowSirrtfFxqYXaAtOmSgoKygVB-SEaVXlSih9-LWLXCmtRuQUcU1pxZWmx2TEhWR8osoTslgm26JLYduF2Nom20HCHrM2tnn3R3JNdK94k00zZxEy7Pr6PQtttsAuQXTRuR7PyJG3DcL59xyT5_u75ewxny8enmbTee4E113uNVdlqbhYUeq09MyXvq6FrAehEkKCFeCt5pJCJeuJX0mxcp6rqvLausmkHJOr_d1tim89YGc2AR00jW0h9miYlIzyshxqxkTsrS5FxATebFMY2L0bRs0nSrM2e5TmE6WhzAwoh9jld0O_2kD9G_phNxhu9wYY_twFSAZdgNZBHRK4ztQx_N_wAQA0h9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551023327</pqid></control><display><type>article</type><title>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bouget, François-Yves ; Lefranc, Marc ; Thommen, Quentin ; Pfeuty, Benjamin ; Lozano, Jean-Claude ; Schatt, Philippe ; Botebol, Hugo ; Vergé, Valérie</creator><creatorcontrib>Bouget, François-Yves ; Lefranc, Marc ; Thommen, Quentin ; Pfeuty, Benjamin ; Lozano, Jean-Claude ; Schatt, Philippe ; Botebol, Hugo ; Vergé, Valérie</creatorcontrib><description>Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined.
Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.</description><identifier>ISSN: 1874-7787</identifier><identifier>EISSN: 1876-7478</identifier><identifier>DOI: 10.1016/j.margen.2014.01.004</identifier><identifier>PMID: 24512973</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biological Clocks - genetics ; Chlorophyta - genetics ; Circadian clock ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Genomics - methods ; Histidine Kinase ; Marine Biology ; Marine phytoplankton ; Models, Biological ; Ostreococcus ; Photoreceptor ; Photoreceptors, Plant - genetics ; Protein Kinases - metabolism ; Systems biology ; Transcription Factors - genetics</subject><ispartof>Marine genomics, 2014-04, Vol.14, p.17-22</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</citedby><cites>FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</cites><orcidid>0000-0003-2563-7967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.margen.2014.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24512973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouget, François-Yves</creatorcontrib><creatorcontrib>Lefranc, Marc</creatorcontrib><creatorcontrib>Thommen, Quentin</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>Lozano, Jean-Claude</creatorcontrib><creatorcontrib>Schatt, Philippe</creatorcontrib><creatorcontrib>Botebol, Hugo</creatorcontrib><creatorcontrib>Vergé, Valérie</creatorcontrib><title>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</title><title>Marine genomics</title><addtitle>Mar Genomics</addtitle><description>Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined.
Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.</description><subject>Biological Clocks - genetics</subject><subject>Chlorophyta - genetics</subject><subject>Circadian clock</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Genomics - methods</subject><subject>Histidine Kinase</subject><subject>Marine Biology</subject><subject>Marine phytoplankton</subject><subject>Models, Biological</subject><subject>Ostreococcus</subject><subject>Photoreceptor</subject><subject>Photoreceptors, Plant - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Systems biology</subject><subject>Transcription Factors - genetics</subject><issn>1874-7787</issn><issn>1876-7478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LAzEQxYMoVqvfQGSPXnZNsskm9SCU4j8o9FLPIc1OJHW7qZndgt_e1aoHD55m4L03j_kRcsFowSirrtfFxqYXaAtOmSgoKygVB-SEaVXlSih9-LWLXCmtRuQUcU1pxZWmx2TEhWR8osoTslgm26JLYduF2Nom20HCHrM2tnn3R3JNdK94k00zZxEy7Pr6PQtttsAuQXTRuR7PyJG3DcL59xyT5_u75ewxny8enmbTee4E113uNVdlqbhYUeq09MyXvq6FrAehEkKCFeCt5pJCJeuJX0mxcp6rqvLausmkHJOr_d1tim89YGc2AR00jW0h9miYlIzyshxqxkTsrS5FxATebFMY2L0bRs0nSrM2e5TmE6WhzAwoh9jld0O_2kD9G_phNxhu9wYY_twFSAZdgNZBHRK4ztQx_N_wAQA0h9M</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Bouget, François-Yves</creator><creator>Lefranc, Marc</creator><creator>Thommen, Quentin</creator><creator>Pfeuty, Benjamin</creator><creator>Lozano, Jean-Claude</creator><creator>Schatt, Philippe</creator><creator>Botebol, Hugo</creator><creator>Vergé, Valérie</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2563-7967</orcidid></search><sort><creationdate>20140401</creationdate><title>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</title><author>Bouget, François-Yves ; Lefranc, Marc ; Thommen, Quentin ; Pfeuty, Benjamin ; Lozano, Jean-Claude ; Schatt, Philippe ; Botebol, Hugo ; Vergé, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Clocks - genetics</topic><topic>Chlorophyta - genetics</topic><topic>Circadian clock</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Genomics - methods</topic><topic>Histidine Kinase</topic><topic>Marine Biology</topic><topic>Marine phytoplankton</topic><topic>Models, Biological</topic><topic>Ostreococcus</topic><topic>Photoreceptor</topic><topic>Photoreceptors, Plant - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Systems biology</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouget, François-Yves</creatorcontrib><creatorcontrib>Lefranc, Marc</creatorcontrib><creatorcontrib>Thommen, Quentin</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>Lozano, Jean-Claude</creatorcontrib><creatorcontrib>Schatt, Philippe</creatorcontrib><creatorcontrib>Botebol, Hugo</creatorcontrib><creatorcontrib>Vergé, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Marine genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouget, François-Yves</au><au>Lefranc, Marc</au><au>Thommen, Quentin</au><au>Pfeuty, Benjamin</au><au>Lozano, Jean-Claude</au><au>Schatt, Philippe</au><au>Botebol, Hugo</au><au>Vergé, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</atitle><jtitle>Marine genomics</jtitle><addtitle>Mar Genomics</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>14</volume><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>1874-7787</issn><eissn>1876-7478</eissn><abstract>Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined.
Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24512973</pmid><doi>10.1016/j.margen.2014.01.004</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2563-7967</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-7787 |
ispartof | Marine genomics, 2014-04, Vol.14, p.17-22 |
issn | 1874-7787 1876-7478 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551023327 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Biological Clocks - genetics Chlorophyta - genetics Circadian clock Circadian Rhythm - genetics Circadian Rhythm - physiology Genomics - methods Histidine Kinase Marine Biology Marine phytoplankton Models, Biological Ostreococcus Photoreceptor Photoreceptors, Plant - genetics Protein Kinases - metabolism Systems biology Transcription Factors - genetics |
title | Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20versus%20non-transcriptional%20clocks:%20A%20case%20study%20in%20Ostreococcus&rft.jtitle=Marine%20genomics&rft.au=Bouget,%20Fran%C3%A7ois-Yves&rft.date=2014-04-01&rft.volume=14&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=1874-7787&rft.eissn=1876-7478&rft_id=info:doi/10.1016/j.margen.2014.01.004&rft_dat=%3Cproquest_cross%3E1551023327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551023327&rft_id=info:pmid/24512973&rft_els_id=S1874778714000051&rfr_iscdi=true |