Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus

Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine genomics 2014-04, Vol.14, p.17-22
Hauptverfasser: Bouget, François-Yves, Lefranc, Marc, Thommen, Quentin, Pfeuty, Benjamin, Lozano, Jean-Claude, Schatt, Philippe, Botebol, Hugo, Vergé, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 17
container_title Marine genomics
container_volume 14
creator Bouget, François-Yves
Lefranc, Marc
Thommen, Quentin
Pfeuty, Benjamin
Lozano, Jean-Claude
Schatt, Philippe
Botebol, Hugo
Vergé, Valérie
description Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined. Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.
doi_str_mv 10.1016/j.margen.2014.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551023327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1874778714000051</els_id><sourcerecordid>1551023327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoVqvfQGSPXnZNsskm9SCU4j8o9FLPIc1OJHW7qZndgt_e1aoHD55m4L03j_kRcsFowSirrtfFxqYXaAtOmSgoKygVB-SEaVXlSih9-LWLXCmtRuQUcU1pxZWmx2TEhWR8osoTslgm26JLYduF2Nom20HCHrM2tnn3R3JNdK94k00zZxEy7Pr6PQtttsAuQXTRuR7PyJG3DcL59xyT5_u75ewxny8enmbTee4E113uNVdlqbhYUeq09MyXvq6FrAehEkKCFeCt5pJCJeuJX0mxcp6rqvLausmkHJOr_d1tim89YGc2AR00jW0h9miYlIzyshxqxkTsrS5FxATebFMY2L0bRs0nSrM2e5TmE6WhzAwoh9jld0O_2kD9G_phNxhu9wYY_twFSAZdgNZBHRK4ztQx_N_wAQA0h9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551023327</pqid></control><display><type>article</type><title>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bouget, François-Yves ; Lefranc, Marc ; Thommen, Quentin ; Pfeuty, Benjamin ; Lozano, Jean-Claude ; Schatt, Philippe ; Botebol, Hugo ; Vergé, Valérie</creator><creatorcontrib>Bouget, François-Yves ; Lefranc, Marc ; Thommen, Quentin ; Pfeuty, Benjamin ; Lozano, Jean-Claude ; Schatt, Philippe ; Botebol, Hugo ; Vergé, Valérie</creatorcontrib><description>Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined. Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.</description><identifier>ISSN: 1874-7787</identifier><identifier>EISSN: 1876-7478</identifier><identifier>DOI: 10.1016/j.margen.2014.01.004</identifier><identifier>PMID: 24512973</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biological Clocks - genetics ; Chlorophyta - genetics ; Circadian clock ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Genomics - methods ; Histidine Kinase ; Marine Biology ; Marine phytoplankton ; Models, Biological ; Ostreococcus ; Photoreceptor ; Photoreceptors, Plant - genetics ; Protein Kinases - metabolism ; Systems biology ; Transcription Factors - genetics</subject><ispartof>Marine genomics, 2014-04, Vol.14, p.17-22</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</citedby><cites>FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</cites><orcidid>0000-0003-2563-7967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.margen.2014.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24512973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouget, François-Yves</creatorcontrib><creatorcontrib>Lefranc, Marc</creatorcontrib><creatorcontrib>Thommen, Quentin</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>Lozano, Jean-Claude</creatorcontrib><creatorcontrib>Schatt, Philippe</creatorcontrib><creatorcontrib>Botebol, Hugo</creatorcontrib><creatorcontrib>Vergé, Valérie</creatorcontrib><title>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</title><title>Marine genomics</title><addtitle>Mar Genomics</addtitle><description>Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined. Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.</description><subject>Biological Clocks - genetics</subject><subject>Chlorophyta - genetics</subject><subject>Circadian clock</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Genomics - methods</subject><subject>Histidine Kinase</subject><subject>Marine Biology</subject><subject>Marine phytoplankton</subject><subject>Models, Biological</subject><subject>Ostreococcus</subject><subject>Photoreceptor</subject><subject>Photoreceptors, Plant - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Systems biology</subject><subject>Transcription Factors - genetics</subject><issn>1874-7787</issn><issn>1876-7478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LAzEQxYMoVqvfQGSPXnZNsskm9SCU4j8o9FLPIc1OJHW7qZndgt_e1aoHD55m4L03j_kRcsFowSirrtfFxqYXaAtOmSgoKygVB-SEaVXlSih9-LWLXCmtRuQUcU1pxZWmx2TEhWR8osoTslgm26JLYduF2Nom20HCHrM2tnn3R3JNdK94k00zZxEy7Pr6PQtttsAuQXTRuR7PyJG3DcL59xyT5_u75ewxny8enmbTee4E113uNVdlqbhYUeq09MyXvq6FrAehEkKCFeCt5pJCJeuJX0mxcp6rqvLausmkHJOr_d1tim89YGc2AR00jW0h9miYlIzyshxqxkTsrS5FxATebFMY2L0bRs0nSrM2e5TmE6WhzAwoh9jld0O_2kD9G_phNxhu9wYY_twFSAZdgNZBHRK4ztQx_N_wAQA0h9M</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Bouget, François-Yves</creator><creator>Lefranc, Marc</creator><creator>Thommen, Quentin</creator><creator>Pfeuty, Benjamin</creator><creator>Lozano, Jean-Claude</creator><creator>Schatt, Philippe</creator><creator>Botebol, Hugo</creator><creator>Vergé, Valérie</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2563-7967</orcidid></search><sort><creationdate>20140401</creationdate><title>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</title><author>Bouget, François-Yves ; Lefranc, Marc ; Thommen, Quentin ; Pfeuty, Benjamin ; Lozano, Jean-Claude ; Schatt, Philippe ; Botebol, Hugo ; Vergé, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f82733724b00c85f1f3fdd45df826445ea4efa8250e65d9fb54bcf2766f8ac993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Clocks - genetics</topic><topic>Chlorophyta - genetics</topic><topic>Circadian clock</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Genomics - methods</topic><topic>Histidine Kinase</topic><topic>Marine Biology</topic><topic>Marine phytoplankton</topic><topic>Models, Biological</topic><topic>Ostreococcus</topic><topic>Photoreceptor</topic><topic>Photoreceptors, Plant - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Systems biology</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouget, François-Yves</creatorcontrib><creatorcontrib>Lefranc, Marc</creatorcontrib><creatorcontrib>Thommen, Quentin</creatorcontrib><creatorcontrib>Pfeuty, Benjamin</creatorcontrib><creatorcontrib>Lozano, Jean-Claude</creatorcontrib><creatorcontrib>Schatt, Philippe</creatorcontrib><creatorcontrib>Botebol, Hugo</creatorcontrib><creatorcontrib>Vergé, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Marine genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouget, François-Yves</au><au>Lefranc, Marc</au><au>Thommen, Quentin</au><au>Pfeuty, Benjamin</au><au>Lozano, Jean-Claude</au><au>Schatt, Philippe</au><au>Botebol, Hugo</au><au>Vergé, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus</atitle><jtitle>Marine genomics</jtitle><addtitle>Mar Genomics</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>14</volume><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>1874-7787</issn><eissn>1876-7478</eissn><abstract>Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the “green” plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined. Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24512973</pmid><doi>10.1016/j.margen.2014.01.004</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2563-7967</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1874-7787
ispartof Marine genomics, 2014-04, Vol.14, p.17-22
issn 1874-7787
1876-7478
language eng
recordid cdi_proquest_miscellaneous_1551023327
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Biological Clocks - genetics
Chlorophyta - genetics
Circadian clock
Circadian Rhythm - genetics
Circadian Rhythm - physiology
Genomics - methods
Histidine Kinase
Marine Biology
Marine phytoplankton
Models, Biological
Ostreococcus
Photoreceptor
Photoreceptors, Plant - genetics
Protein Kinases - metabolism
Systems biology
Transcription Factors - genetics
title Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20versus%20non-transcriptional%20clocks:%20A%20case%20study%20in%20Ostreococcus&rft.jtitle=Marine%20genomics&rft.au=Bouget,%20Fran%C3%A7ois-Yves&rft.date=2014-04-01&rft.volume=14&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=1874-7787&rft.eissn=1876-7478&rft_id=info:doi/10.1016/j.margen.2014.01.004&rft_dat=%3Cproquest_cross%3E1551023327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551023327&rft_id=info:pmid/24512973&rft_els_id=S1874778714000051&rfr_iscdi=true