A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks
Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microci...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2014-01, Vol.136 (1), p.011009-np |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | 1 |
container_start_page | 011009 |
container_title | Journal of biomechanical engineering |
container_volume | 136 |
creator | Pan, Qing Wang, Ruofan Reglin, Bettina Cai, Guolong Yan, Jing Pries, Axel R Ning, Gangmin |
description | Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks. |
doi_str_mv | 10.1115/1.4025879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551021785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551021785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</originalsourceid><addsrcrecordid>eNqN0E1P3DAQBmCroirLtoeekZCP5RCY8VfsI6LQIgGL1HLFchKHhjox2AmIf9-sdumZ02g0j15pXkK-IhwhojzGIwFM6tJ8IAuUTBfaSNwhC0ChCyg57pK9nB8AELWAT2SXCTQgQS3I3QldDb743vV-yF0cXKBXbvzjezd29XqJjQ-0jYn-GqfmtRvu6XylN1PIswienof4QruBXnV1is8u11NwiV778SWmv_kz-di6kP2X7VyS2_Oz36c_i8vVj4vTk8vCca7Hom6VK02DCoRTnEnjmQEBldauNUpVrZKiZZp5JVXleF1pro0XLdZV2TjB-JJ82-Q-pvg0-Tzavsu1D8ENPk7ZopQIDEst30GRcWYEW9PDDZ1fyzn51j6mrnfp1SLYdfMW7bb52R5sY6eq981_-Vb1DPY3wOXe24c4pbnsbHkJoID_A8aShY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512329425</pqid></control><display><type>article</type><title>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Pan, Qing ; Wang, Ruofan ; Reglin, Bettina ; Cai, Guolong ; Yan, Jing ; Pries, Axel R ; Ning, Gangmin</creator><creatorcontrib>Pan, Qing ; Wang, Ruofan ; Reglin, Bettina ; Cai, Guolong ; Yan, Jing ; Pries, Axel R ; Ning, Gangmin</creatorcontrib><description>Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4025879</identifier><identifier>PMID: 24190506</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Animals ; Arterioles - physiology ; Blood Flow Velocity - physiology ; Blood Pressure - physiology ; Hemodynamics ; Male ; Microcirculation - physiology ; Microvessels - physiology ; Models, Cardiovascular ; Pulsatile Flow - physiology ; Rats ; Rats, Wistar ; Rheology ; Venules - physiology</subject><ispartof>Journal of biomechanical engineering, 2014-01, Vol.136 (1), p.011009-np</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</citedby><cites>FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38519</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24190506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Qing</creatorcontrib><creatorcontrib>Wang, Ruofan</creatorcontrib><creatorcontrib>Reglin, Bettina</creatorcontrib><creatorcontrib>Cai, Guolong</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Pries, Axel R</creatorcontrib><creatorcontrib>Ning, Gangmin</creatorcontrib><title>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.</description><subject>Animals</subject><subject>Arterioles - physiology</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Hemodynamics</subject><subject>Male</subject><subject>Microcirculation - physiology</subject><subject>Microvessels - physiology</subject><subject>Models, Cardiovascular</subject><subject>Pulsatile Flow - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rheology</subject><subject>Venules - physiology</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0E1P3DAQBmCroirLtoeekZCP5RCY8VfsI6LQIgGL1HLFchKHhjox2AmIf9-sdumZ02g0j15pXkK-IhwhojzGIwFM6tJ8IAuUTBfaSNwhC0ChCyg57pK9nB8AELWAT2SXCTQgQS3I3QldDb743vV-yF0cXKBXbvzjezd29XqJjQ-0jYn-GqfmtRvu6XylN1PIswienof4QruBXnV1is8u11NwiV778SWmv_kz-di6kP2X7VyS2_Oz36c_i8vVj4vTk8vCca7Hom6VK02DCoRTnEnjmQEBldauNUpVrZKiZZp5JVXleF1pro0XLdZV2TjB-JJ82-Q-pvg0-Tzavsu1D8ENPk7ZopQIDEst30GRcWYEW9PDDZ1fyzn51j6mrnfp1SLYdfMW7bb52R5sY6eq981_-Vb1DPY3wOXe24c4pbnsbHkJoID_A8aShY8</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Pan, Qing</creator><creator>Wang, Ruofan</creator><creator>Reglin, Bettina</creator><creator>Cai, Guolong</creator><creator>Yan, Jing</creator><creator>Pries, Axel R</creator><creator>Ning, Gangmin</creator><general>ASME</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</title><author>Pan, Qing ; Wang, Ruofan ; Reglin, Bettina ; Cai, Guolong ; Yan, Jing ; Pries, Axel R ; Ning, Gangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Arterioles - physiology</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Hemodynamics</topic><topic>Male</topic><topic>Microcirculation - physiology</topic><topic>Microvessels - physiology</topic><topic>Models, Cardiovascular</topic><topic>Pulsatile Flow - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rheology</topic><topic>Venules - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Qing</creatorcontrib><creatorcontrib>Wang, Ruofan</creatorcontrib><creatorcontrib>Reglin, Bettina</creatorcontrib><creatorcontrib>Cai, Guolong</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Pries, Axel R</creatorcontrib><creatorcontrib>Ning, Gangmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Qing</au><au>Wang, Ruofan</au><au>Reglin, Bettina</au><au>Cai, Guolong</au><au>Yan, Jing</au><au>Pries, Axel R</au><au>Ning, Gangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>136</volume><issue>1</issue><spage>011009</spage><epage>np</epage><pages>011009-np</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.</abstract><cop>United States</cop><pub>ASME</pub><pmid>24190506</pmid><doi>10.1115/1.4025879</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2014-01, Vol.136 (1), p.011009-np |
issn | 0148-0731 1528-8951 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551021785 |
source | MEDLINE; ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Animals Arterioles - physiology Blood Flow Velocity - physiology Blood Pressure - physiology Hemodynamics Male Microcirculation - physiology Microvessels - physiology Models, Cardiovascular Pulsatile Flow - physiology Rats Rats, Wistar Rheology Venules - physiology |
title | A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20One-Dimensional%20Mathematical%20Model%20for%20Studying%20the%20Pulsatile%20Flow%20in%20Microvascular%20Networks&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Pan,%20Qing&rft.date=2014-01-01&rft.volume=136&rft.issue=1&rft.spage=011009&rft.epage=np&rft.pages=011009-np&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4025879&rft_dat=%3Cproquest_cross%3E1551021785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512329425&rft_id=info:pmid/24190506&rfr_iscdi=true |