A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks

Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2014-01, Vol.136 (1), p.011009-np
Hauptverfasser: Pan, Qing, Wang, Ruofan, Reglin, Bettina, Cai, Guolong, Yan, Jing, Pries, Axel R, Ning, Gangmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue 1
container_start_page 011009
container_title Journal of biomechanical engineering
container_volume 136
creator Pan, Qing
Wang, Ruofan
Reglin, Bettina
Cai, Guolong
Yan, Jing
Pries, Axel R
Ning, Gangmin
description Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.
doi_str_mv 10.1115/1.4025879
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551021785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551021785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</originalsourceid><addsrcrecordid>eNqN0E1P3DAQBmCroirLtoeekZCP5RCY8VfsI6LQIgGL1HLFchKHhjox2AmIf9-sdumZ02g0j15pXkK-IhwhojzGIwFM6tJ8IAuUTBfaSNwhC0ChCyg57pK9nB8AELWAT2SXCTQgQS3I3QldDb743vV-yF0cXKBXbvzjezd29XqJjQ-0jYn-GqfmtRvu6XylN1PIswienof4QruBXnV1is8u11NwiV778SWmv_kz-di6kP2X7VyS2_Oz36c_i8vVj4vTk8vCca7Hom6VK02DCoRTnEnjmQEBldauNUpVrZKiZZp5JVXleF1pro0XLdZV2TjB-JJ82-Q-pvg0-Tzavsu1D8ENPk7ZopQIDEst30GRcWYEW9PDDZ1fyzn51j6mrnfp1SLYdfMW7bb52R5sY6eq981_-Vb1DPY3wOXe24c4pbnsbHkJoID_A8aShY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512329425</pqid></control><display><type>article</type><title>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Pan, Qing ; Wang, Ruofan ; Reglin, Bettina ; Cai, Guolong ; Yan, Jing ; Pries, Axel R ; Ning, Gangmin</creator><creatorcontrib>Pan, Qing ; Wang, Ruofan ; Reglin, Bettina ; Cai, Guolong ; Yan, Jing ; Pries, Axel R ; Ning, Gangmin</creatorcontrib><description>Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4025879</identifier><identifier>PMID: 24190506</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Animals ; Arterioles - physiology ; Blood Flow Velocity - physiology ; Blood Pressure - physiology ; Hemodynamics ; Male ; Microcirculation - physiology ; Microvessels - physiology ; Models, Cardiovascular ; Pulsatile Flow - physiology ; Rats ; Rats, Wistar ; Rheology ; Venules - physiology</subject><ispartof>Journal of biomechanical engineering, 2014-01, Vol.136 (1), p.011009-np</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</citedby><cites>FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38519</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24190506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Qing</creatorcontrib><creatorcontrib>Wang, Ruofan</creatorcontrib><creatorcontrib>Reglin, Bettina</creatorcontrib><creatorcontrib>Cai, Guolong</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Pries, Axel R</creatorcontrib><creatorcontrib>Ning, Gangmin</creatorcontrib><title>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.</description><subject>Animals</subject><subject>Arterioles - physiology</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Hemodynamics</subject><subject>Male</subject><subject>Microcirculation - physiology</subject><subject>Microvessels - physiology</subject><subject>Models, Cardiovascular</subject><subject>Pulsatile Flow - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rheology</subject><subject>Venules - physiology</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0E1P3DAQBmCroirLtoeekZCP5RCY8VfsI6LQIgGL1HLFchKHhjox2AmIf9-sdumZ02g0j15pXkK-IhwhojzGIwFM6tJ8IAuUTBfaSNwhC0ChCyg57pK9nB8AELWAT2SXCTQgQS3I3QldDb743vV-yF0cXKBXbvzjezd29XqJjQ-0jYn-GqfmtRvu6XylN1PIswienof4QruBXnV1is8u11NwiV778SWmv_kz-di6kP2X7VyS2_Oz36c_i8vVj4vTk8vCca7Hom6VK02DCoRTnEnjmQEBldauNUpVrZKiZZp5JVXleF1pro0XLdZV2TjB-JJ82-Q-pvg0-Tzavsu1D8ENPk7ZopQIDEst30GRcWYEW9PDDZ1fyzn51j6mrnfp1SLYdfMW7bb52R5sY6eq981_-Vb1DPY3wOXe24c4pbnsbHkJoID_A8aShY8</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Pan, Qing</creator><creator>Wang, Ruofan</creator><creator>Reglin, Bettina</creator><creator>Cai, Guolong</creator><creator>Yan, Jing</creator><creator>Pries, Axel R</creator><creator>Ning, Gangmin</creator><general>ASME</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</title><author>Pan, Qing ; Wang, Ruofan ; Reglin, Bettina ; Cai, Guolong ; Yan, Jing ; Pries, Axel R ; Ning, Gangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-cf6a79d1604a63259e29040b88af966bf654f282e656ba3cb8389e4f1cb7da423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Arterioles - physiology</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Hemodynamics</topic><topic>Male</topic><topic>Microcirculation - physiology</topic><topic>Microvessels - physiology</topic><topic>Models, Cardiovascular</topic><topic>Pulsatile Flow - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rheology</topic><topic>Venules - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Qing</creatorcontrib><creatorcontrib>Wang, Ruofan</creatorcontrib><creatorcontrib>Reglin, Bettina</creatorcontrib><creatorcontrib>Cai, Guolong</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Pries, Axel R</creatorcontrib><creatorcontrib>Ning, Gangmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Qing</au><au>Wang, Ruofan</au><au>Reglin, Bettina</au><au>Cai, Guolong</au><au>Yan, Jing</au><au>Pries, Axel R</au><au>Ning, Gangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>136</volume><issue>1</issue><spage>011009</spage><epage>np</epage><pages>011009-np</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.</abstract><cop>United States</cop><pub>ASME</pub><pmid>24190506</pmid><doi>10.1115/1.4025879</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 2014-01, Vol.136 (1), p.011009-np
issn 0148-0731
1528-8951
language eng
recordid cdi_proquest_miscellaneous_1551021785
source MEDLINE; ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Animals
Arterioles - physiology
Blood Flow Velocity - physiology
Blood Pressure - physiology
Hemodynamics
Male
Microcirculation - physiology
Microvessels - physiology
Models, Cardiovascular
Pulsatile Flow - physiology
Rats
Rats, Wistar
Rheology
Venules - physiology
title A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20One-Dimensional%20Mathematical%20Model%20for%20Studying%20the%20Pulsatile%20Flow%20in%20Microvascular%20Networks&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Pan,%20Qing&rft.date=2014-01-01&rft.volume=136&rft.issue=1&rft.spage=011009&rft.epage=np&rft.pages=011009-np&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4025879&rft_dat=%3Cproquest_cross%3E1551021785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512329425&rft_id=info:pmid/24190506&rfr_iscdi=true