Water Oxidation by a Nickel-Glycine Catalyst

The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Am. Chem. Soc 2014-07, Vol.136 (29), p.10198-10201
Hauptverfasser: Wang, Dong, Ghirlanda, Giovanna, Allen, James P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10201
container_issue 29
container_start_page 10198
container_title J. Am. Chem. Soc
container_volume 136
creator Wang, Dong
Ghirlanda, Giovanna
Allen, James P
description The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm2 at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron–proton coupled process.
doi_str_mv 10.1021/ja504282w
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1548192831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1548192831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-b3ab5c8255d424286541c27a0d4381db9ae93db53944b63e2cbd5c4fe255bdac3</originalsourceid><addsrcrecordid>eNpt0MtKw0AUBuBBFFurC19AgiAoGJ1rOrOUoFUodqO4HOZWnJomNTNB8_aOpHbl6nDgO_-BH4BTBG8QxOh2pRikmOOvPTBGDMOcIVzsgzGEEOdTXpAROAphldak0CEYYSoEplyMwfWbiq7NFt_equibOtN9prJnbz5clc-q3vjaZaWKqupDPAYHS1UFd7KdE_D6cP9SPubzxeypvJvnikIec02UZoZjxizF6WPBKDJ4qqClhCOrhXKCWM2IoFQXxGGjLTN06dKFtsqQCTgfcpsQvQzGR2feTVPXzkSJUDEViCV0OaBN23x2LkS59sG4qlK1a7ogEaMcCcwJSvRqoKZtQmjdUm5av1ZtLxGUvw3KXYPJnm1jO712dif_KkvgYgDKBLlqurZOVfwT9AOtPXUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548192831</pqid></control><display><type>article</type><title>Water Oxidation by a Nickel-Glycine Catalyst</title><source>ACS Publications</source><source>MEDLINE</source><creator>Wang, Dong ; Ghirlanda, Giovanna ; Allen, James P</creator><creatorcontrib>Wang, Dong ; Ghirlanda, Giovanna ; Allen, James P ; Energy Frontier Research Centers (EFRC) ; Center for Bio-Inspired Solar Fuel Production (BISfuel)</creatorcontrib><description>The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm2 at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron–proton coupled process.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja504282w</identifier><identifier>PMID: 24992489</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; catalysis (homogeneous), catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) ; Electrochemistry ; Glycine - chemistry ; Hydrogen-Ion Concentration ; Light ; Nickel - chemistry ; Oxidation-Reduction ; Photochemical Processes ; Water - chemistry</subject><ispartof>J. Am. Chem. Soc, 2014-07, Vol.136 (29), p.10198-10201</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-b3ab5c8255d424286541c27a0d4381db9ae93db53944b63e2cbd5c4fe255bdac3</citedby><cites>FETCH-LOGICAL-a408t-b3ab5c8255d424286541c27a0d4381db9ae93db53944b63e2cbd5c4fe255bdac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja504282w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja504282w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24992489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1167915$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Ghirlanda, Giovanna</creatorcontrib><creatorcontrib>Allen, James P</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Solar Fuel Production (BISfuel)</creatorcontrib><title>Water Oxidation by a Nickel-Glycine Catalyst</title><title>J. Am. Chem. Soc</title><addtitle>J. Am. Chem. Soc</addtitle><description>The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm2 at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron–proton coupled process.</description><subject>Catalysis</subject><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Electrochemistry</subject><subject>Glycine - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Light</subject><subject>Nickel - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Photochemical Processes</subject><subject>Water - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKw0AUBuBBFFurC19AgiAoGJ1rOrOUoFUodqO4HOZWnJomNTNB8_aOpHbl6nDgO_-BH4BTBG8QxOh2pRikmOOvPTBGDMOcIVzsgzGEEOdTXpAROAphldak0CEYYSoEplyMwfWbiq7NFt_equibOtN9prJnbz5clc-q3vjaZaWKqupDPAYHS1UFd7KdE_D6cP9SPubzxeypvJvnikIec02UZoZjxizF6WPBKDJ4qqClhCOrhXKCWM2IoFQXxGGjLTN06dKFtsqQCTgfcpsQvQzGR2feTVPXzkSJUDEViCV0OaBN23x2LkS59sG4qlK1a7ogEaMcCcwJSvRqoKZtQmjdUm5av1ZtLxGUvw3KXYPJnm1jO712dif_KkvgYgDKBLlqurZOVfwT9AOtPXUE</recordid><startdate>20140723</startdate><enddate>20140723</enddate><creator>Wang, Dong</creator><creator>Ghirlanda, Giovanna</creator><creator>Allen, James P</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140723</creationdate><title>Water Oxidation by a Nickel-Glycine Catalyst</title><author>Wang, Dong ; Ghirlanda, Giovanna ; Allen, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-b3ab5c8255d424286541c27a0d4381db9ae93db53944b63e2cbd5c4fe255bdac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>catalysis (homogeneous), catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Electrochemistry</topic><topic>Glycine - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Light</topic><topic>Nickel - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Photochemical Processes</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Ghirlanda, Giovanna</creatorcontrib><creatorcontrib>Allen, James P</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Solar Fuel Production (BISfuel)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Chem. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong</au><au>Ghirlanda, Giovanna</au><au>Allen, James P</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Bio-Inspired Solar Fuel Production (BISfuel)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Oxidation by a Nickel-Glycine Catalyst</atitle><jtitle>J. Am. Chem. Soc</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-07-23</date><risdate>2014</risdate><volume>136</volume><issue>29</issue><spage>10198</spage><epage>10201</epage><pages>10198-10201</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm2 at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron–proton coupled process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24992489</pmid><doi>10.1021/ja504282w</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof J. Am. Chem. Soc, 2014-07, Vol.136 (29), p.10198-10201
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1548192831
source ACS Publications; MEDLINE
subjects Catalysis
catalysis (homogeneous), catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)
Electrochemistry
Glycine - chemistry
Hydrogen-Ion Concentration
Light
Nickel - chemistry
Oxidation-Reduction
Photochemical Processes
Water - chemistry
title Water Oxidation by a Nickel-Glycine Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Oxidation%20by%20a%20Nickel-Glycine%20Catalyst&rft.jtitle=J.%20Am.%20Chem.%20Soc&rft.au=Wang,%20Dong&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-07-23&rft.volume=136&rft.issue=29&rft.spage=10198&rft.epage=10201&rft.pages=10198-10201&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja504282w&rft_dat=%3Cproquest_osti_%3E1548192831%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548192831&rft_id=info:pmid/24992489&rfr_iscdi=true