Model uncertainties in predictions of arrival of coronal mass ejections at Earth orbit

It is very important, both for research and forecasting application, to be aware of uncertainty estimation of a scientific model, i.e., to know how model performance depends on the uncertainty in the input parameters. Scientific models are becoming more important as tools for space weather operators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2010-06, Vol.8 (6), p.np-n/a
Hauptverfasser: Taktakishvili, A., MacNeice, P., Odstrcil, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is very important, both for research and forecasting application, to be aware of uncertainty estimation of a scientific model, i.e., to know how model performance depends on the uncertainty in the input parameters. Scientific models are becoming more important as tools for space weather operators' applications and for space weather forecasting. It is essential that operational users, forecasters, model developers, and the scientific community are aware of model capabilities and limitations. In our previous study we validated the performance of the WSA/ENLIL cone model combination in simulating the propagation of 14 events of coronal mass ejections (CMEs) to the L1 point using the cone model approach for halo CMEs. In this short report we present the results of the uncertainty estimation for the WSA/ENLIL cone model combination studying the dependence of the arrival time of the CME shock and the magnitude of the CME impact on the magnetosphere on the uncertainty in the CME input parameters using three events from the previously reported 14 event list.
ISSN:1542-7390
1539-4964
1542-7390
DOI:10.1029/2009SW000543