Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI

Purpose To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation‐ and perfusion‐related information in the lungs, where the perfusion maps in particular have shown promise for clinical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2014-08, Vol.72 (2), p.558-562
Hauptverfasser: Kjørstad, Åsmund, Corteville, Dominique M.R., Fischer, Andre, Henzler, Thomas, Schmid-Bindert, Gerald, Zöllner, Frank G., Schad, Lothar R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 2
container_start_page 558
container_title Magnetic resonance in medicine
container_volume 72
creator Kjørstad, Åsmund
Corteville, Dominique M.R.
Fischer, Andre
Henzler, Thomas
Schmid-Bindert, Gerald
Zöllner, Frank G.
Schad, Lothar R.
description Purpose To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation‐ and perfusion‐related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow‐ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. Methods The standard FD perfusion images are quantified by comparing the partially blood‐filled pixels in the lung parenchyma with the fully blood‐filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced‐MRI. Results All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF‐FD = 150 mL/min/100 mL, mean PBF‐SEEPAGE = 151 mL/min/100 mL). The Bland‐Altman plot shows a good spread of values, indicating no systematic bias between the methods. Conclusion Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Magn Reson Med 72:558–562, 2014. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/mrm.24930
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1547853291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3374226561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4570-3836cee6a30b4939faef38fd873cc4ee3608afb81d020e66a3d1bd3bb845d03d3</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWqsL_4AU3Ohi2pvHvJZafEHro1ZchszMHYnOoyYzav-9qbUKguAqIec7h3tzCNmj0KcAbFCass9EzGGNdKjPmMf8WKyTDoQCPE5jsUW2rX0CgDgOxSbZYgIgACY65Oa2VVWjG9XoV-wVbfXYm6HJW6vrqoevqmid4q7uwUl53RqNppdhWpez2upP7ccwnlzukI1cFRZ3v84uuT87nQ4vvNH1-eXweOSlwg_dVBEPUsRAcUjc5HGuMOdRnkUhT1OByAOIVJ5ENAMGGDguo0nGkyQSfgY8411yuMydmfqlRdvIUtsUi0JVWLdWUl-Ekc9ZTP-Ful-jUeDQg1_ok1u5cossKBcnBI8ddbSkUlNbazCXM6NLZeaSglw0Il0j8rMRx-5_JbZJidk3uarAAYMl8KYLnP-dJMeT8SrSWzq0bfD926HMswxCHvry4epc0tHw5G48vZVD_gHBIKR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545324439</pqid></control><display><type>article</type><title>Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kjørstad, Åsmund ; Corteville, Dominique M.R. ; Fischer, Andre ; Henzler, Thomas ; Schmid-Bindert, Gerald ; Zöllner, Frank G. ; Schad, Lothar R.</creator><creatorcontrib>Kjørstad, Åsmund ; Corteville, Dominique M.R. ; Fischer, Andre ; Henzler, Thomas ; Schmid-Bindert, Gerald ; Zöllner, Frank G. ; Schad, Lothar R.</creatorcontrib><description>Purpose To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation‐ and perfusion‐related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow‐ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. Methods The standard FD perfusion images are quantified by comparing the partially blood‐filled pixels in the lung parenchyma with the fully blood‐filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced‐MRI. Results All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF‐FD = 150 mL/min/100 mL, mean PBF‐SEEPAGE = 151 mL/min/100 mL). The Bland‐Altman plot shows a good spread of values, indicating no systematic bias between the methods. Conclusion Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Magn Reson Med 72:558–562, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24930</identifier><identifier>PMID: 24006024</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; ASL ; Blood Flow Velocity - physiology ; Fourier Analysis ; Fourier decomposition ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Lung - blood supply ; Lung - physiology ; Magnetic Resonance Angiography - methods ; noncontrast enhanced lung MRI ; perfusion imaging ; Perfusion Imaging - methods ; Pulmonary Circulation - physiology ; quantification ; Reference Values ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Magnetic resonance in medicine, 2014-08, Vol.72 (2), p.558-562</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4570-3836cee6a30b4939faef38fd873cc4ee3608afb81d020e66a3d1bd3bb845d03d3</citedby><cites>FETCH-LOGICAL-c4570-3836cee6a30b4939faef38fd873cc4ee3608afb81d020e66a3d1bd3bb845d03d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24006024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kjørstad, Åsmund</creatorcontrib><creatorcontrib>Corteville, Dominique M.R.</creatorcontrib><creatorcontrib>Fischer, Andre</creatorcontrib><creatorcontrib>Henzler, Thomas</creatorcontrib><creatorcontrib>Schmid-Bindert, Gerald</creatorcontrib><creatorcontrib>Zöllner, Frank G.</creatorcontrib><creatorcontrib>Schad, Lothar R.</creatorcontrib><title>Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation‐ and perfusion‐related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow‐ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. Methods The standard FD perfusion images are quantified by comparing the partially blood‐filled pixels in the lung parenchyma with the fully blood‐filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced‐MRI. Results All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF‐FD = 150 mL/min/100 mL, mean PBF‐SEEPAGE = 151 mL/min/100 mL). The Bland‐Altman plot shows a good spread of values, indicating no systematic bias between the methods. Conclusion Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Magn Reson Med 72:558–562, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>ASL</subject><subject>Blood Flow Velocity - physiology</subject><subject>Fourier Analysis</subject><subject>Fourier decomposition</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Lung - blood supply</subject><subject>Lung - physiology</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>noncontrast enhanced lung MRI</subject><subject>perfusion imaging</subject><subject>Perfusion Imaging - methods</subject><subject>Pulmonary Circulation - physiology</subject><subject>quantification</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMoWqsL_4AU3Ohi2pvHvJZafEHro1ZchszMHYnOoyYzav-9qbUKguAqIec7h3tzCNmj0KcAbFCass9EzGGNdKjPmMf8WKyTDoQCPE5jsUW2rX0CgDgOxSbZYgIgACY65Oa2VVWjG9XoV-wVbfXYm6HJW6vrqoevqmid4q7uwUl53RqNppdhWpez2upP7ccwnlzukI1cFRZ3v84uuT87nQ4vvNH1-eXweOSlwg_dVBEPUsRAcUjc5HGuMOdRnkUhT1OByAOIVJ5ENAMGGDguo0nGkyQSfgY8411yuMydmfqlRdvIUtsUi0JVWLdWUl-Ekc9ZTP-Ful-jUeDQg1_ok1u5cossKBcnBI8ddbSkUlNbazCXM6NLZeaSglw0Il0j8rMRx-5_JbZJidk3uarAAYMl8KYLnP-dJMeT8SrSWzq0bfD926HMswxCHvry4epc0tHw5G48vZVD_gHBIKR0</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Kjørstad, Åsmund</creator><creator>Corteville, Dominique M.R.</creator><creator>Fischer, Andre</creator><creator>Henzler, Thomas</creator><creator>Schmid-Bindert, Gerald</creator><creator>Zöllner, Frank G.</creator><creator>Schad, Lothar R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201408</creationdate><title>Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI</title><author>Kjørstad, Åsmund ; Corteville, Dominique M.R. ; Fischer, Andre ; Henzler, Thomas ; Schmid-Bindert, Gerald ; Zöllner, Frank G. ; Schad, Lothar R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4570-3836cee6a30b4939faef38fd873cc4ee3608afb81d020e66a3d1bd3bb845d03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>ASL</topic><topic>Blood Flow Velocity - physiology</topic><topic>Fourier Analysis</topic><topic>Fourier decomposition</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Lung - blood supply</topic><topic>Lung - physiology</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>noncontrast enhanced lung MRI</topic><topic>perfusion imaging</topic><topic>Perfusion Imaging - methods</topic><topic>Pulmonary Circulation - physiology</topic><topic>quantification</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kjørstad, Åsmund</creatorcontrib><creatorcontrib>Corteville, Dominique M.R.</creatorcontrib><creatorcontrib>Fischer, Andre</creatorcontrib><creatorcontrib>Henzler, Thomas</creatorcontrib><creatorcontrib>Schmid-Bindert, Gerald</creatorcontrib><creatorcontrib>Zöllner, Frank G.</creatorcontrib><creatorcontrib>Schad, Lothar R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kjørstad, Åsmund</au><au>Corteville, Dominique M.R.</au><au>Fischer, Andre</au><au>Henzler, Thomas</au><au>Schmid-Bindert, Gerald</au><au>Zöllner, Frank G.</au><au>Schad, Lothar R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2014-08</date><risdate>2014</risdate><volume>72</volume><issue>2</issue><spage>558</spage><epage>562</epage><pages>558-562</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation‐ and perfusion‐related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow‐ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. Methods The standard FD perfusion images are quantified by comparing the partially blood‐filled pixels in the lung parenchyma with the fully blood‐filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced‐MRI. Results All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF‐FD = 150 mL/min/100 mL, mean PBF‐SEEPAGE = 151 mL/min/100 mL). The Bland‐Altman plot shows a good spread of values, indicating no systematic bias between the methods. Conclusion Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Magn Reson Med 72:558–562, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24006024</pmid><doi>10.1002/mrm.24930</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2014-08, Vol.72 (2), p.558-562
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1547853291
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
ASL
Blood Flow Velocity - physiology
Fourier Analysis
Fourier decomposition
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Lung - blood supply
Lung - physiology
Magnetic Resonance Angiography - methods
noncontrast enhanced lung MRI
perfusion imaging
Perfusion Imaging - methods
Pulmonary Circulation - physiology
quantification
Reference Values
Reproducibility of Results
Sensitivity and Specificity
title Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20lung%20perfusion%20evaluation%20using%20fourier%20decomposition%20perfusion%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Kj%C3%B8rstad,%20%C3%85smund&rft.date=2014-08&rft.volume=72&rft.issue=2&rft.spage=558&rft.epage=562&rft.pages=558-562&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24930&rft_dat=%3Cproquest_cross%3E3374226561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545324439&rft_id=info:pmid/24006024&rfr_iscdi=true