Ramp compression of diamond to five terapascals
New laboratory techniques for applying enormous pressures allow diamond to be compressed to 50 million atmospheres, providing insight into the interiors of planets and theoretical implications. Journey to the centre of Jupiter Knowledge of the behaviour of matter under conditions of extreme pressure...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2014-07, Vol.511 (7509), p.330-333 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 7509 |
container_start_page | 330 |
container_title | Nature (London) |
container_volume | 511 |
creator | Smith, R. F. Eggert, J. H. Jeanloz, R. Duffy, T. S. Braun, D. G. Patterson, J. R. Rudd, R. E. Biener, J. Lazicki, A. E. Hamza, A. V. Wang, J. Braun, T. Benedict, L. X. Celliers, P. M. Collins, G. W. |
description | New laboratory techniques for applying enormous pressures allow diamond to be compressed to 50 million atmospheres, providing insight into the interiors of planets and theoretical implications.
Journey to the centre of Jupiter
Knowledge of the behaviour of matter under conditions of extreme pressure is essential for describing the interior state of giant planets such as Jupiter and many extrasolar planets. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California is pursuing laboratory astrophysics with shock-free dynamic (ramp) compression up to 50 million atmospheres pressure. Working with the NIF at temperatures below those used in fusion experiments, Raymond Smith and colleagues have achieved a new experimental benchmark in the replication of conditions deep within giant planets. They describe properties of carbon compressed to an unprecedented density of 12 g cm
−3
. These results also provide some of the most direct experimental tests of quantum-statistical theories developed in the early days of quantum mechanics.
The recent discovery of more than a thousand planets outside our Solar System
1
,
2
, together with the significant push to achieve inertially confined fusion in the laboratory
3
, has prompted a renewed interest in how dense matter behaves at millions to billions of atmospheres of pressure. The theoretical description of such electron-degenerate matter has matured since the early quantum statistical model of Thomas and Fermi
4
,
5
,
6
,
7
,
8
,
9
,
10
, and now suggests that new complexities can emerge at pressures where core electrons (not only valence electrons) influence the structure and bonding of matter
11
. Recent developments in shock-free dynamic (ramp) compression now allow laboratory access to this dense matter regime. Here we describe ramp-compression measurements for diamond, achieving 3.7-fold compression at a peak pressure of 5 terapascals (equivalent to 50 million atmospheres). These equation-of-state data can now be compared to first-principles density functional calculations
12
and theories long used to describe matter present in the interiors of giant planets, in stars, and in inertial-confinement fusion experiments. Our data also provide new constraints on mass–radius relationships for carbon-rich planets. |
doi_str_mv | 10.1038/nature13526 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1546219866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375585984</galeid><sourcerecordid>A375585984</sourcerecordid><originalsourceid>FETCH-LOGICAL-a543t-8764b5dbfd6e3d9becead837a15529fddaa71ae1438ea58c25136e668c3a63923</originalsourceid><addsrcrecordid>eNpt0s9rFDEUB_AgFrtWT95l0ItSp00mkx9zLEVtoSBUPYe3yZslZWYyTWaK_vdm2aq7ZcjhQfLJN-HxCHnD6BmjXJ8PMM0RGReVfEZWrFayrKVWz8mK0kqXVHN5TF6mdEcpFUzVL8hxJSinTNEVOb-Ffixs6MeIKfkwFKEtnIc-DK6YQtH6BywmjDBCstClV-SozQVfP9YT8vPL5x-XV-XNt6_Xlxc3JYiaT6VWsl4Lt26dRO6aNVoEp7kCJkTVtM4BKAbIaq4RhLaVYFyilNpykLyp-An5sMsdY7ifMU2m98li18GAYU6GiVpWrNFSZvr-Cb0Lcxzy77ZKNbXOz_xXG-jQ-KENUwS7DTUXXAmhRaPrrMoFtcEhd6ALA7Y-bx_4dwvejv7e7KOzBZSXw97bxdSPBxeymfDXtIE5JXP9_fbQnu6sjSGliK0Zo-8h_jaMmu18mL35yPrtY6_mdY_un_07EBl82oGUj4YNxr1mLuT9AT6bwH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547948143</pqid></control><display><type>article</type><title>Ramp compression of diamond to five terapascals</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Smith, R. F. ; Eggert, J. H. ; Jeanloz, R. ; Duffy, T. S. ; Braun, D. G. ; Patterson, J. R. ; Rudd, R. E. ; Biener, J. ; Lazicki, A. E. ; Hamza, A. V. ; Wang, J. ; Braun, T. ; Benedict, L. X. ; Celliers, P. M. ; Collins, G. W.</creator><creatorcontrib>Smith, R. F. ; Eggert, J. H. ; Jeanloz, R. ; Duffy, T. S. ; Braun, D. G. ; Patterson, J. R. ; Rudd, R. E. ; Biener, J. ; Lazicki, A. E. ; Hamza, A. V. ; Wang, J. ; Braun, T. ; Benedict, L. X. ; Celliers, P. M. ; Collins, G. W.</creatorcontrib><description>New laboratory techniques for applying enormous pressures allow diamond to be compressed to 50 million atmospheres, providing insight into the interiors of planets and theoretical implications.
Journey to the centre of Jupiter
Knowledge of the behaviour of matter under conditions of extreme pressure is essential for describing the interior state of giant planets such as Jupiter and many extrasolar planets. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California is pursuing laboratory astrophysics with shock-free dynamic (ramp) compression up to 50 million atmospheres pressure. Working with the NIF at temperatures below those used in fusion experiments, Raymond Smith and colleagues have achieved a new experimental benchmark in the replication of conditions deep within giant planets. They describe properties of carbon compressed to an unprecedented density of 12 g cm
−3
. These results also provide some of the most direct experimental tests of quantum-statistical theories developed in the early days of quantum mechanics.
The recent discovery of more than a thousand planets outside our Solar System
1
,
2
, together with the significant push to achieve inertially confined fusion in the laboratory
3
, has prompted a renewed interest in how dense matter behaves at millions to billions of atmospheres of pressure. The theoretical description of such electron-degenerate matter has matured since the early quantum statistical model of Thomas and Fermi
4
,
5
,
6
,
7
,
8
,
9
,
10
, and now suggests that new complexities can emerge at pressures where core electrons (not only valence electrons) influence the structure and bonding of matter
11
. Recent developments in shock-free dynamic (ramp) compression now allow laboratory access to this dense matter regime. Here we describe ramp-compression measurements for diamond, achieving 3.7-fold compression at a peak pressure of 5 terapascals (equivalent to 50 million atmospheres). These equation-of-state data can now be compared to first-principles density functional calculations
12
and theories long used to describe matter present in the interiors of giant planets, in stars, and in inertial-confinement fusion experiments. Our data also provide new constraints on mass–radius relationships for carbon-rich planets.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature13526</identifier><identifier>PMID: 25030170</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/930 ; 639/766/33/445/846 ; Atmosphere ; Carbon ; Cold ; Diamond crystals ; Diamonds ; Experiments ; Humanities and Social Sciences ; Lasers ; letter ; Measurement ; Measurement techniques ; Mechanical properties ; Methods ; multidisciplinary ; Planets ; Pressure ; Properties ; Science ; Statistical models</subject><ispartof>Nature (London), 2014-07, Vol.511 (7509), p.330-333</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 17, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a543t-8764b5dbfd6e3d9becead837a15529fddaa71ae1438ea58c25136e668c3a63923</citedby><cites>FETCH-LOGICAL-a543t-8764b5dbfd6e3d9becead837a15529fddaa71ae1438ea58c25136e668c3a63923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature13526$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature13526$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25030170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, R. F.</creatorcontrib><creatorcontrib>Eggert, J. H.</creatorcontrib><creatorcontrib>Jeanloz, R.</creatorcontrib><creatorcontrib>Duffy, T. S.</creatorcontrib><creatorcontrib>Braun, D. G.</creatorcontrib><creatorcontrib>Patterson, J. R.</creatorcontrib><creatorcontrib>Rudd, R. E.</creatorcontrib><creatorcontrib>Biener, J.</creatorcontrib><creatorcontrib>Lazicki, A. E.</creatorcontrib><creatorcontrib>Hamza, A. V.</creatorcontrib><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Braun, T.</creatorcontrib><creatorcontrib>Benedict, L. X.</creatorcontrib><creatorcontrib>Celliers, P. M.</creatorcontrib><creatorcontrib>Collins, G. W.</creatorcontrib><title>Ramp compression of diamond to five terapascals</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>New laboratory techniques for applying enormous pressures allow diamond to be compressed to 50 million atmospheres, providing insight into the interiors of planets and theoretical implications.
Journey to the centre of Jupiter
Knowledge of the behaviour of matter under conditions of extreme pressure is essential for describing the interior state of giant planets such as Jupiter and many extrasolar planets. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California is pursuing laboratory astrophysics with shock-free dynamic (ramp) compression up to 50 million atmospheres pressure. Working with the NIF at temperatures below those used in fusion experiments, Raymond Smith and colleagues have achieved a new experimental benchmark in the replication of conditions deep within giant planets. They describe properties of carbon compressed to an unprecedented density of 12 g cm
−3
. These results also provide some of the most direct experimental tests of quantum-statistical theories developed in the early days of quantum mechanics.
The recent discovery of more than a thousand planets outside our Solar System
1
,
2
, together with the significant push to achieve inertially confined fusion in the laboratory
3
, has prompted a renewed interest in how dense matter behaves at millions to billions of atmospheres of pressure. The theoretical description of such electron-degenerate matter has matured since the early quantum statistical model of Thomas and Fermi
4
,
5
,
6
,
7
,
8
,
9
,
10
, and now suggests that new complexities can emerge at pressures where core electrons (not only valence electrons) influence the structure and bonding of matter
11
. Recent developments in shock-free dynamic (ramp) compression now allow laboratory access to this dense matter regime. Here we describe ramp-compression measurements for diamond, achieving 3.7-fold compression at a peak pressure of 5 terapascals (equivalent to 50 million atmospheres). These equation-of-state data can now be compared to first-principles density functional calculations
12
and theories long used to describe matter present in the interiors of giant planets, in stars, and in inertial-confinement fusion experiments. Our data also provide new constraints on mass–radius relationships for carbon-rich planets.</description><subject>639/301/930</subject><subject>639/766/33/445/846</subject><subject>Atmosphere</subject><subject>Carbon</subject><subject>Cold</subject><subject>Diamond crystals</subject><subject>Diamonds</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>letter</subject><subject>Measurement</subject><subject>Measurement techniques</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Planets</subject><subject>Pressure</subject><subject>Properties</subject><subject>Science</subject><subject>Statistical models</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0s9rFDEUB_AgFrtWT95l0ItSp00mkx9zLEVtoSBUPYe3yZslZWYyTWaK_vdm2aq7ZcjhQfLJN-HxCHnD6BmjXJ8PMM0RGReVfEZWrFayrKVWz8mK0kqXVHN5TF6mdEcpFUzVL8hxJSinTNEVOb-Ffixs6MeIKfkwFKEtnIc-DK6YQtH6BywmjDBCstClV-SozQVfP9YT8vPL5x-XV-XNt6_Xlxc3JYiaT6VWsl4Lt26dRO6aNVoEp7kCJkTVtM4BKAbIaq4RhLaVYFyilNpykLyp-An5sMsdY7ifMU2m98li18GAYU6GiVpWrNFSZvr-Cb0Lcxzy77ZKNbXOz_xXG-jQ-KENUwS7DTUXXAmhRaPrrMoFtcEhd6ALA7Y-bx_4dwvejv7e7KOzBZSXw97bxdSPBxeymfDXtIE5JXP9_fbQnu6sjSGliK0Zo-8h_jaMmu18mL35yPrtY6_mdY_un_07EBl82oGUj4YNxr1mLuT9AT6bwH0</recordid><startdate>20140717</startdate><enddate>20140717</enddate><creator>Smith, R. F.</creator><creator>Eggert, J. H.</creator><creator>Jeanloz, R.</creator><creator>Duffy, T. S.</creator><creator>Braun, D. G.</creator><creator>Patterson, J. R.</creator><creator>Rudd, R. E.</creator><creator>Biener, J.</creator><creator>Lazicki, A. E.</creator><creator>Hamza, A. V.</creator><creator>Wang, J.</creator><creator>Braun, T.</creator><creator>Benedict, L. X.</creator><creator>Celliers, P. M.</creator><creator>Collins, G. W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140717</creationdate><title>Ramp compression of diamond to five terapascals</title><author>Smith, R. F. ; Eggert, J. H. ; Jeanloz, R. ; Duffy, T. S. ; Braun, D. G. ; Patterson, J. R. ; Rudd, R. E. ; Biener, J. ; Lazicki, A. E. ; Hamza, A. V. ; Wang, J. ; Braun, T. ; Benedict, L. X. ; Celliers, P. M. ; Collins, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a543t-8764b5dbfd6e3d9becead837a15529fddaa71ae1438ea58c25136e668c3a63923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/930</topic><topic>639/766/33/445/846</topic><topic>Atmosphere</topic><topic>Carbon</topic><topic>Cold</topic><topic>Diamond crystals</topic><topic>Diamonds</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>letter</topic><topic>Measurement</topic><topic>Measurement techniques</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Planets</topic><topic>Pressure</topic><topic>Properties</topic><topic>Science</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, R. F.</creatorcontrib><creatorcontrib>Eggert, J. H.</creatorcontrib><creatorcontrib>Jeanloz, R.</creatorcontrib><creatorcontrib>Duffy, T. S.</creatorcontrib><creatorcontrib>Braun, D. G.</creatorcontrib><creatorcontrib>Patterson, J. R.</creatorcontrib><creatorcontrib>Rudd, R. E.</creatorcontrib><creatorcontrib>Biener, J.</creatorcontrib><creatorcontrib>Lazicki, A. E.</creatorcontrib><creatorcontrib>Hamza, A. V.</creatorcontrib><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Braun, T.</creatorcontrib><creatorcontrib>Benedict, L. X.</creatorcontrib><creatorcontrib>Celliers, P. M.</creatorcontrib><creatorcontrib>Collins, G. W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, R. F.</au><au>Eggert, J. H.</au><au>Jeanloz, R.</au><au>Duffy, T. S.</au><au>Braun, D. G.</au><au>Patterson, J. R.</au><au>Rudd, R. E.</au><au>Biener, J.</au><au>Lazicki, A. E.</au><au>Hamza, A. V.</au><au>Wang, J.</au><au>Braun, T.</au><au>Benedict, L. X.</au><au>Celliers, P. M.</au><au>Collins, G. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramp compression of diamond to five terapascals</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2014-07-17</date><risdate>2014</risdate><volume>511</volume><issue>7509</issue><spage>330</spage><epage>333</epage><pages>330-333</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>New laboratory techniques for applying enormous pressures allow diamond to be compressed to 50 million atmospheres, providing insight into the interiors of planets and theoretical implications.
Journey to the centre of Jupiter
Knowledge of the behaviour of matter under conditions of extreme pressure is essential for describing the interior state of giant planets such as Jupiter and many extrasolar planets. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California is pursuing laboratory astrophysics with shock-free dynamic (ramp) compression up to 50 million atmospheres pressure. Working with the NIF at temperatures below those used in fusion experiments, Raymond Smith and colleagues have achieved a new experimental benchmark in the replication of conditions deep within giant planets. They describe properties of carbon compressed to an unprecedented density of 12 g cm
−3
. These results also provide some of the most direct experimental tests of quantum-statistical theories developed in the early days of quantum mechanics.
The recent discovery of more than a thousand planets outside our Solar System
1
,
2
, together with the significant push to achieve inertially confined fusion in the laboratory
3
, has prompted a renewed interest in how dense matter behaves at millions to billions of atmospheres of pressure. The theoretical description of such electron-degenerate matter has matured since the early quantum statistical model of Thomas and Fermi
4
,
5
,
6
,
7
,
8
,
9
,
10
, and now suggests that new complexities can emerge at pressures where core electrons (not only valence electrons) influence the structure and bonding of matter
11
. Recent developments in shock-free dynamic (ramp) compression now allow laboratory access to this dense matter regime. Here we describe ramp-compression measurements for diamond, achieving 3.7-fold compression at a peak pressure of 5 terapascals (equivalent to 50 million atmospheres). These equation-of-state data can now be compared to first-principles density functional calculations
12
and theories long used to describe matter present in the interiors of giant planets, in stars, and in inertial-confinement fusion experiments. Our data also provide new constraints on mass–radius relationships for carbon-rich planets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25030170</pmid><doi>10.1038/nature13526</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2014-07, Vol.511 (7509), p.330-333 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1546219866 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/930 639/766/33/445/846 Atmosphere Carbon Cold Diamond crystals Diamonds Experiments Humanities and Social Sciences Lasers letter Measurement Measurement techniques Mechanical properties Methods multidisciplinary Planets Pressure Properties Science Statistical models |
title | Ramp compression of diamond to five terapascals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramp%20compression%20of%20diamond%20to%20five%20terapascals&rft.jtitle=Nature%20(London)&rft.au=Smith,%20R.%20F.&rft.date=2014-07-17&rft.volume=511&rft.issue=7509&rft.spage=330&rft.epage=333&rft.pages=330-333&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature13526&rft_dat=%3Cgale_proqu%3EA375585984%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547948143&rft_id=info:pmid/25030170&rft_galeid=A375585984&rfr_iscdi=true |