Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model
Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environm...
Gespeichert in:
Veröffentlicht in: | Ying yong sheng tai xue bao 2014-04, Vol.25 (4), p.1100-1106 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 4 |
container_start_page | 1100 |
container_title | Ying yong sheng tai xue bao |
container_volume | 25 |
creator | Sun, Yu Shi, Ming-Chang Peng, Huan Zhu, Pei-Lin Liu, Si-Lin Wu, Shi-Lei He, Cheng Chen, Feng |
description | Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1544741033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544741033</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-74dd66dce8aa1a61d5960f76a714f8741f19ad9be44ab902224f42d6487891023</originalsourceid><addsrcrecordid>eNo1kE1Lw0AYhPeg2FL7F2Rvegnsd7LHUlsVWgWp4C28ye7WhSQbdxPQf29K62mGh2Fg5grNKSE005yzGVqm5CsileSEaXWDZkwSSjmRc_S-DdGmATf--DX47oidjxa7CdaQziBE_Ag_k72HrjmRfRi7AXyXcAXJGhw6vF99bl4PuA3GNrfo2kGT7PKiC_Sx3RzWz9nu7ellvdplPdVqyHJhjFKmtgUABUWN1Iq4XEFOhStyQR3VYHRlhYBKE8aYcIIZJYq80JQwvkAP594-hu9xGlG2PtW2aaCzYUwllUJMNYTzKXp3iY5Va03ZR99C_C3_f-B_jptYEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544741033</pqid></control><display><type>article</type><title>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Yu ; Shi, Ming-Chang ; Peng, Huan ; Zhu, Pei-Lin ; Liu, Si-Lin ; Wu, Shi-Lei ; He, Cheng ; Chen, Feng</creator><creatorcontrib>Sun, Yu ; Shi, Ming-Chang ; Peng, Huan ; Zhu, Pei-Lin ; Liu, Si-Lin ; Wu, Shi-Lei ; He, Cheng ; Chen, Feng</creatorcontrib><description>Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we</description><identifier>ISSN: 1001-9332</identifier><identifier>PMID: 25011305</identifier><language>chi</language><publisher>China</publisher><subject>Fires ; Forecasting ; Forests ; Lightning ; Models, Theoretical ; Trees ; Wind</subject><ispartof>Ying yong sheng tai xue bao, 2014-04, Vol.25 (4), p.1100-1106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25011305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Shi, Ming-Chang</creatorcontrib><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Zhu, Pei-Lin</creatorcontrib><creatorcontrib>Liu, Si-Lin</creatorcontrib><creatorcontrib>Wu, Shi-Lei</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</title><title>Ying yong sheng tai xue bao</title><addtitle>Ying Yong Sheng Tai Xue Bao</addtitle><description>Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we</description><subject>Fires</subject><subject>Forecasting</subject><subject>Forests</subject><subject>Lightning</subject><subject>Models, Theoretical</subject><subject>Trees</subject><subject>Wind</subject><issn>1001-9332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1Lw0AYhPeg2FL7F2Rvegnsd7LHUlsVWgWp4C28ye7WhSQbdxPQf29K62mGh2Fg5grNKSE005yzGVqm5CsileSEaXWDZkwSSjmRc_S-DdGmATf--DX47oidjxa7CdaQziBE_Ag_k72HrjmRfRi7AXyXcAXJGhw6vF99bl4PuA3GNrfo2kGT7PKiC_Sx3RzWz9nu7ellvdplPdVqyHJhjFKmtgUABUWN1Iq4XEFOhStyQR3VYHRlhYBKE8aYcIIZJYq80JQwvkAP594-hu9xGlG2PtW2aaCzYUwllUJMNYTzKXp3iY5Va03ZR99C_C3_f-B_jptYEg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Sun, Yu</creator><creator>Shi, Ming-Chang</creator><creator>Peng, Huan</creator><creator>Zhu, Pei-Lin</creator><creator>Liu, Si-Lin</creator><creator>Wu, Shi-Lei</creator><creator>He, Cheng</creator><creator>Chen, Feng</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140401</creationdate><title>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</title><author>Sun, Yu ; Shi, Ming-Chang ; Peng, Huan ; Zhu, Pei-Lin ; Liu, Si-Lin ; Wu, Shi-Lei ; He, Cheng ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-74dd66dce8aa1a61d5960f76a714f8741f19ad9be44ab902224f42d6487891023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2014</creationdate><topic>Fires</topic><topic>Forecasting</topic><topic>Forests</topic><topic>Lightning</topic><topic>Models, Theoretical</topic><topic>Trees</topic><topic>Wind</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Shi, Ming-Chang</creatorcontrib><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Zhu, Pei-Lin</creatorcontrib><creatorcontrib>Liu, Si-Lin</creatorcontrib><creatorcontrib>Wu, Shi-Lei</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Ying yong sheng tai xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yu</au><au>Shi, Ming-Chang</au><au>Peng, Huan</au><au>Zhu, Pei-Lin</au><au>Liu, Si-Lin</au><au>Wu, Shi-Lei</au><au>He, Cheng</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</atitle><jtitle>Ying yong sheng tai xue bao</jtitle><addtitle>Ying Yong Sheng Tai Xue Bao</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>25</volume><issue>4</issue><spage>1100</spage><epage>1106</epage><pages>1100-1106</pages><issn>1001-9332</issn><abstract>Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we</abstract><cop>China</cop><pmid>25011305</pmid><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-9332 |
ispartof | Ying yong sheng tai xue bao, 2014-04, Vol.25 (4), p.1100-1106 |
issn | 1001-9332 |
language | chi |
recordid | cdi_proquest_miscellaneous_1544741033 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Fires Forecasting Forests Lightning Models, Theoretical Trees Wind |
title | Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forest%20lighting%20fire%20forecasting%20for%20Daxing'anling%20Mountains%20based%20on%20MAXENT%20model&rft.jtitle=Ying%20yong%20sheng%20tai%20xue%20bao&rft.au=Sun,%20Yu&rft.date=2014-04-01&rft.volume=25&rft.issue=4&rft.spage=1100&rft.epage=1106&rft.pages=1100-1106&rft.issn=1001-9332&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1544741033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544741033&rft_id=info:pmid/25011305&rfr_iscdi=true |