Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model

Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ying yong sheng tai xue bao 2014-04, Vol.25 (4), p.1100-1106
Hauptverfasser: Sun, Yu, Shi, Ming-Chang, Peng, Huan, Zhu, Pei-Lin, Liu, Si-Lin, Wu, Shi-Lei, He, Cheng, Chen, Feng
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 4
container_start_page 1100
container_title Ying yong sheng tai xue bao
container_volume 25
creator Sun, Yu
Shi, Ming-Chang
Peng, Huan
Zhu, Pei-Lin
Liu, Si-Lin
Wu, Shi-Lei
He, Cheng
Chen, Feng
description Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1544741033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544741033</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-74dd66dce8aa1a61d5960f76a714f8741f19ad9be44ab902224f42d6487891023</originalsourceid><addsrcrecordid>eNo1kE1Lw0AYhPeg2FL7F2Rvegnsd7LHUlsVWgWp4C28ye7WhSQbdxPQf29K62mGh2Fg5grNKSE005yzGVqm5CsileSEaXWDZkwSSjmRc_S-DdGmATf--DX47oidjxa7CdaQziBE_Ag_k72HrjmRfRi7AXyXcAXJGhw6vF99bl4PuA3GNrfo2kGT7PKiC_Sx3RzWz9nu7ellvdplPdVqyHJhjFKmtgUABUWN1Iq4XEFOhStyQR3VYHRlhYBKE8aYcIIZJYq80JQwvkAP594-hu9xGlG2PtW2aaCzYUwllUJMNYTzKXp3iY5Va03ZR99C_C3_f-B_jptYEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544741033</pqid></control><display><type>article</type><title>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Yu ; Shi, Ming-Chang ; Peng, Huan ; Zhu, Pei-Lin ; Liu, Si-Lin ; Wu, Shi-Lei ; He, Cheng ; Chen, Feng</creator><creatorcontrib>Sun, Yu ; Shi, Ming-Chang ; Peng, Huan ; Zhu, Pei-Lin ; Liu, Si-Lin ; Wu, Shi-Lei ; He, Cheng ; Chen, Feng</creatorcontrib><description>Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we</description><identifier>ISSN: 1001-9332</identifier><identifier>PMID: 25011305</identifier><language>chi</language><publisher>China</publisher><subject>Fires ; Forecasting ; Forests ; Lightning ; Models, Theoretical ; Trees ; Wind</subject><ispartof>Ying yong sheng tai xue bao, 2014-04, Vol.25 (4), p.1100-1106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25011305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Shi, Ming-Chang</creatorcontrib><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Zhu, Pei-Lin</creatorcontrib><creatorcontrib>Liu, Si-Lin</creatorcontrib><creatorcontrib>Wu, Shi-Lei</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</title><title>Ying yong sheng tai xue bao</title><addtitle>Ying Yong Sheng Tai Xue Bao</addtitle><description>Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we</description><subject>Fires</subject><subject>Forecasting</subject><subject>Forests</subject><subject>Lightning</subject><subject>Models, Theoretical</subject><subject>Trees</subject><subject>Wind</subject><issn>1001-9332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1Lw0AYhPeg2FL7F2Rvegnsd7LHUlsVWgWp4C28ye7WhSQbdxPQf29K62mGh2Fg5grNKSE005yzGVqm5CsileSEaXWDZkwSSjmRc_S-DdGmATf--DX47oidjxa7CdaQziBE_Ag_k72HrjmRfRi7AXyXcAXJGhw6vF99bl4PuA3GNrfo2kGT7PKiC_Sx3RzWz9nu7ellvdplPdVqyHJhjFKmtgUABUWN1Iq4XEFOhStyQR3VYHRlhYBKE8aYcIIZJYq80JQwvkAP594-hu9xGlG2PtW2aaCzYUwllUJMNYTzKXp3iY5Va03ZR99C_C3_f-B_jptYEg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Sun, Yu</creator><creator>Shi, Ming-Chang</creator><creator>Peng, Huan</creator><creator>Zhu, Pei-Lin</creator><creator>Liu, Si-Lin</creator><creator>Wu, Shi-Lei</creator><creator>He, Cheng</creator><creator>Chen, Feng</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140401</creationdate><title>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</title><author>Sun, Yu ; Shi, Ming-Chang ; Peng, Huan ; Zhu, Pei-Lin ; Liu, Si-Lin ; Wu, Shi-Lei ; He, Cheng ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-74dd66dce8aa1a61d5960f76a714f8741f19ad9be44ab902224f42d6487891023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2014</creationdate><topic>Fires</topic><topic>Forecasting</topic><topic>Forests</topic><topic>Lightning</topic><topic>Models, Theoretical</topic><topic>Trees</topic><topic>Wind</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Shi, Ming-Chang</creatorcontrib><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Zhu, Pei-Lin</creatorcontrib><creatorcontrib>Liu, Si-Lin</creatorcontrib><creatorcontrib>Wu, Shi-Lei</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Ying yong sheng tai xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yu</au><au>Shi, Ming-Chang</au><au>Peng, Huan</au><au>Zhu, Pei-Lin</au><au>Liu, Si-Lin</au><au>Wu, Shi-Lei</au><au>He, Cheng</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model</atitle><jtitle>Ying yong sheng tai xue bao</jtitle><addtitle>Ying Yong Sheng Tai Xue Bao</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>25</volume><issue>4</issue><spage>1100</spage><epage>1106</epage><pages>1100-1106</pages><issn>1001-9332</issn><abstract>Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning we</abstract><cop>China</cop><pmid>25011305</pmid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-9332
ispartof Ying yong sheng tai xue bao, 2014-04, Vol.25 (4), p.1100-1106
issn 1001-9332
language chi
recordid cdi_proquest_miscellaneous_1544741033
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Fires
Forecasting
Forests
Lightning
Models, Theoretical
Trees
Wind
title Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forest%20lighting%20fire%20forecasting%20for%20Daxing'anling%20Mountains%20based%20on%20MAXENT%20model&rft.jtitle=Ying%20yong%20sheng%20tai%20xue%20bao&rft.au=Sun,%20Yu&rft.date=2014-04-01&rft.volume=25&rft.issue=4&rft.spage=1100&rft.epage=1106&rft.pages=1100-1106&rft.issn=1001-9332&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1544741033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544741033&rft_id=info:pmid/25011305&rfr_iscdi=true